358 research outputs found

    A possible cooling effect in high temperature superconductors

    Full text link
    We show that an adiabatic increase of the supercurrent along a superconductor with lines of nodes of the order parameter on the Fermi surface can result in a cooling effect. The maximum cooling occurs if the supercurrent increases up to its critical value. The effect can also be observed in a mixed state of a bulk sample. An estimate of the energy dissipation shows that substantial cooling can be performed during a reasonable time even in the microkelvin regime.Comment: 5 pages, to appear in Phys. Rev.

    On the Number of Zeros of Abelian Integrals: A Constructive Solution of the Infinitesimal Hilbert Sixteenth Problem

    Full text link
    We prove that the number of limit cycles generated by a small non-conservative perturbation of a Hamiltonian polynomial vector field on the plane, is bounded by a double exponential of the degree of the fields. This solves the long-standing tangential Hilbert 16th problem. The proof uses only the fact that Abelian integrals of a given degree are horizontal sections of a regular flat meromorphic connection (Gauss-Manin connection) with a quasiunipotent monodromy group.Comment: Final revisio

    Kinks in the Presence of Rapidly Varying Perturbations

    Full text link
    Dynamics of sine-Gordon kinks in the presence of rapidly varying periodic perturbations of different physical origins is described analytically and numerically. The analytical approach is based on asymptotic expansions, and it allows to derive, in a rigorous way, an effective nonlinear equation for the slowly varying field component in any order of the asymptotic procedure as expansions in the small parameter ω1\omega^{-1}, ω\omega being the frequency of the rapidly varying ac driving force. Three physically important examples of such a dynamics, {\em i.e.}, kinks driven by a direct or parametric ac force, and kinks on rotating and oscillating background, are analysed in detail. It is shown that in the main order of the asymptotic procedure the effective equation for the slowly varying field component is {\em a renormalized sine-Gordon equation} in the case of the direct driving force or rotating (but phase-locked to an external ac force) background, and it is {\em the double sine-Gordon equation} for the parametric driving force. The properties of the kinks described by the renormalized nonlinear equations are analysed, and it is demonstrated analytically and numerically which kinds of physical phenomena may be expected in dealing with the renormalized, rather than the unrenormalized, nonlinear dynamics. In particular, we predict several qualitatively new effects which include, {\em e.g.}, the perturbation-inducedComment: New copy of the paper of the above title to replace the previous one, lost in the midst of the bulletin board. RevTeX 3.

    Dark solitons in ferromagnetic chains with first- and second-neighbor interactions

    Full text link
    We study the ferromagnetic spin chain with both first- and second-neighbor interactions. We obtained the condition for the appearance and stability of bright and dark solitons for arbitrary wave number inside the Brillouin zone. The influence of the second-neighbor interaction and the anisotropy on the soliton properties is considered. The scattering of dark solitons from point defects in the discrete spin chain is investigated numerically.Comment: 7 pages,5 figure

    Interplay of quark and meson degrees of freedom in a near-threshold resonance: multi-channel case

    Get PDF
    We investigate the interplay of quark and meson degrees of freedom in a physical state representing a near-threshold resonance for the case of multiple continuum channels. The aim is to demonstrate the full complexity of near-threshold phenomena. It turns out that those are especially rich, if both quark and meson dynamics generate simultaneously weakly coupled near-threshold poles in the S-matrix. We study the properties of this scenario in detail, such as t-matrix and production amplitude zeros, as well as various effects of the continuum channels interplay.Comment: LaTeX2e, 10 pages, version to appear in Eur.Phys.J.

    Single fluxon in double stacked Josephson junctions: Analytic solution

    Full text link
    We derive an approximate analytic solution for a single fluxon in a double stacked Josephson junctions (SJJ's) for arbitrary junction parameters and coupling strengths. It is shown that the fluxon in a double SJJ's can be characterized by two components, with different Swihart velocities and Josephson penetration depths. Using the perturbation theory we find the second order correction to the solution and analyze its accuracy. Comparison with direct numerical simulations shows a quantitative agreement between exact and approximate analytic solutions. It is shown that due to the presence of two components, the fluxon in SJJ's may have an unusual shape with an inverted magnetic field in the second junction when the velocity of the fluxon is approaching the lower Swihart velocity.Comment: 4 pages, 3 figure

    Perturbation-induced radiation by the Ablowitz-Ladik soliton

    Full text link
    An efficient formalism is elaborated to analytically describe dynamics of the Ablowitz-Ladik soliton in the presence of perturbations. This formalism is based on using the Riemann-Hilbert problem and provides the means of calculating evolution of the discrete soliton parameters, as well as shape distortion and perturbation-induced radiation effects. As an example, soliton characteristics are calculated for linear damping and quintic perturbations.Comment: 13 pages, 4 figures, Phys. Rev. E (in press

    Interaction of N solitons in the massive Thirring model and optical gap system: the Complex Toda Chain Model

    Full text link
    Using the Karpman-Solov''ev quasiparticle approach for soliton-soliton interaction I show that the train propagation of N well separated solitons of the massive Thirring model is described by the complex Toda chain with N nodes. For the optical gap system a generalised (non-integrable) complex Toda chain is derived for description of the train propagation of well separated gap solitons. These results are in favor of the recently proposed conjecture of universality of the complex Toda chain.Comment: RevTex, 23 pages, no figures. Submitted to Physical Review

    Bunching of fluxons by the Cherenkov radiation in Josephson multilayers

    Get PDF
    A single magnetic fluxon moving at a high velocity in a Josephson multilayer (e.g., high-temperature superconductor such as BSCCO) can emit electromagnetic waves (Cherenkov radiation), which leads to formation of novel stable dynamic states consisting of several bunched fluxons. We find such bunched states in numerical simulation in the simplest cases of two and three coupled junctions. At a given driving current, several different bunched states are stable and move at velocities that are higher than corresponding single-fluxon velocity. These and some of the more complex higher-order bunched states and transitions between them are investigated in detail.Comment: 6 pages + 6 Figures, to be published in Phys. Rev. B on July 1, 200

    Modulational instability in nonlocal nonlinear Kerr media

    Get PDF
    We study modulational instability (MI) of plane waves in nonlocal nonlinear Kerr media. For a focusing nonlinearity we show that, although the nonlocality tends to suppress MI, it can never remove it completely, irrespectively of the particular profile of the nonlocal response function. For a defocusing nonlinearity the stability properties depend sensitively on the response function profile: for a smooth profile (e.g., a Gaussian) plane waves are always stable, but MI may occur for a rectangular response. We also find that the reduced model for a weak nonlocality predicts MI in defocusing media for arbitrary response profiles, as long as the intensity exceeds a certain critical value. However, it appears that this regime of MI is beyond the validity of the reduced model, if it is to represent the weakly nonlocal limit of a general nonlocal nonlinearity, as in optics and the theory of Bose-Einstein condensates.Comment: 8 pages, submitted to Phys. Rev.
    corecore