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Bunching of fluxons by Cherenkov radiation in Josephson multilayers
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A single magnetic fluxon moving at a high velocity in a Josephson multilayer~e.g., high-temperature
superconductor such as BSCCO! can emit electromagnetic waves~Cherenkov radiation!, which leads to the
formation of stable dynamic states consisting of several bunched fluxons. We find such bunched states in
numerical simulations in the simplest cases of two and three coupled junctions. At a given driving current,
several different bunched states are stable and move at velocities that are higher than the corresponding
single-fluxon velocity. These and some of the more complex higher-order bunched states and transitions
between them are investigated in detail.
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I. INTRODUCTION

In recent years, a great deal of attention has been attra
to different kinds of solid-state multilayered systems, e
artificial Josephson and magnetic multilayers, hig
temperature superconductors~HTSs! and perovskites, to
name just a few. Multilayers are attractive because it is of
possible to multiply a physical effect achieved in one lay
by N ~and sometimes byN2), where N is the number of
layers. This can be exploited for fabrication of solid-sta
devices. In addition, multilayered solid-state systems sho
variety of physical phenomena which result from the int
action between individual layers.

In this article we focus on Josephson multilayers, the s
plest example of which is a stack consisting of just two lo
Josephson junctions~LJJs!. The results of our consideratio
can be applied to intrinsically layered HTS materials,1 since
the Josephson-stack model has proved to be appropriat
these structures.2–4

In earlier papers5–8 it was shown that, in some cases,
fluxon ~Josephson vortex! moving in one of the layers of the
stack may emit electromagnetic~plasma! waves by means o
the Cherenkov mechanism. The fluxon together with
Cherenkov radiation has the profile of a traveling wa
f(x2ut), having an oscillating gradually decaying ta
Such a wave profile generates an effective potential for
other fluxon which can be added into the system. If the s
ond fluxon is trapped in one of the minima of this traveli
potential, we can get abunched stateof two fluxons. In such
a state, two fluxons can stably move at a small cons
distance from one another, which is not possible otherw
Fluxons of the same polarity usually repel each other, e
being located in different layers.

Similar bunched states were already found in discrete
sephson transmission lines,9 as well as in long Josephso
junctions with the so-calledb term due to the surface imped
ance of the superconductor.10–12 The dynamics of conven
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tional LJJs is described by the sine-Gordon equation wh
does not allow the fluxon to move faster than the Swih
velocity and, therefore, the Cherenkov radiation never
pears. In both cases mentioned above~the discrete system o
the system with theb term!, the perturbation of the sine
Gordon equation results in a modified dispersion relation
Josephson plasma waves and the appearance of an oscil
tail. This tail, in turn, results in an attractive interaction b
tween fluxons, i.e., bunching. Nevertheless, the mere p
ence of an oscillating tail is not a sufficient condition f
bunching.

In this paper, we investigate the problem of fluxon bunc
ing in a system of two and three inductively coupled jun
tions with a primary state@1u0# ~one fluxon in the top junc-
tion and no fluxon in the bottom one! or @0u1u0# ~a fluxon
only in the middle junction of a three-fold stack!. We show
that bunching is possible for some fluxon configurations a
specific range of parameters of the system. In addition,
found that the bunched states radiate less than single-flu
states, and therefore can move with a higher velocity. S
tion II presents the results of numerical simulations; in S
III we discuss the obtained results and the feasibility of
experimental observation of bunched states. We also deri
simple analytical expression which shows the possibility
the existence of bunched states. Section IV concludes
work.

II. NUMERICAL SIMULATIONS

The system of equations which describes the dynamic
Josephson phasesfA,B in two coupled LJJA and LJJB is13,14

fxx
A

12S2
2f tt

A2sinfA2
S

12S2
fxx

B 5af t
A2g, ~1!

fxx
B

12S2
2f tt

B2
sinfB

J
2

S

12S2
fxx

A 5af t
B2g, ~2!
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whereS(21,S,0) is a dimensionless coupling constan
andJ5 j c

A/ j c
B is the ratio of the critical currents, whilea and

g5 j / j c
A are the damping coefficient and normalized bias c

rent, respectively, which are assumed to be the same in
LJJs. It is also assumed that other parameters of the j
tions, such as the effective magnetic thicknesses and ca
tances, are the same. As has been shown earlier,6,7 the Cher-
enkov radiation in a twofold stack may take place only if t
fluxon is moving in the junction with smallerj c . We sup-
pose in the following that the fluxon moves in LJJA, which
implies J,1.

In the caseN53, we impose the symmetry conditio
fA[fC, which is natural when the fluxon moves in th
middle layer, and, thus, we can rewrite equations from R
13 in the form

fxx
A

122S2
2f tt

A2sinfA2
Sfxx

B

122S2
5af t

A2g, ~3!

fxx
B

122S2
2f tt

B2sinfB2
2Sfxx

A

122S2
5af t

B2g. ~4!

Note the factor 2 in the last term on the left-hand side~LHS!
of Eq. ~4!. In the case of three coupled LJJs, we assumJ
51, since for more than two coupled junctions the Cher
kov radiation can be obtained for a uniform stack with eq
critical currents.7

A. Numerical technique

The numerical procedure works as follows. For a giv
set of LJJ parameters, we compute the current-voltage c
acteristic~IVC! of the system, i.e.,V̄A,B(g). To calculate the
voltagesV̄A,B for fixed values ofg, we simulate the dynam
ics of the phasesfA,B(x,t) by solving Eqs.~1! and ~2! for
N52 or Eqs.~3! and~4! for N53, using the periodic bound
ary conditions

fA,B~x5L !5fA,B~x50!12pNA,B, ~5!

fx
A,B~x5L !5fx

A,B~x50!, ~6!

whereNA,B is the number of fluxons trapped in LJJA,B. In
order to simulate a quasi-infinite system, we have cho
annular geometry with the length~circumference! of the
junction L5100.

To solve the differential equations, we use an expl
method @expressingfA,B(t1Dt) as a function offA,B(t)
andfA,B(t2Dt)#, treatingfxx with a five-point,f tt with a
three-point, andf t with a two-point symmetric finite-
difference scheme. The spatial and time steps used for
simulations weredx50.025 anddt50.00625. After the
simulation of the phase dynamics forT510 time units, we
calculate the average dc voltagesV̄A,B for this time interval
as

V̄A,B5
1

TE0

T

f t
A,B~ t !dt5

fA,B~T!2fA,B~0!

T
. ~7!

The dc voltage at pointx can be defined as the average nu
ber of fluxons~the flux! passed through the junction at th
,
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point. Since the average fluxon density is not singular in a
point of the junction~otherwise the energy will grow infi-
nitely!, we conclude that the average dc voltage is the sa
for any point x. Therefore, for faster convergence of o
averaging procedure, we can additionally average the ph
fA,B in Eq. ~7! over the length of the stack.

After the values ofV̄A,B were found as per Eq.~7!, the
evolution of the phasesfA,B(x,t) is simulated further during
1.1T time units; the dc voltagesV̄A,B are calculated for this
new time interval and compared with the previously calc
lated values. We repeat such iterations further, increasing
time interval by a factor of 1.1 until the difference in d
voltages uV̄(1.1n11T)2V̄(1.1nT)u obtained in two subse
quent iterations becomes less than an accuracydV51024.
The particular factor of 1.1 was found to be quite optim
and to provide for fast convergence, as well as a more e
cient averaging of low harmonics on each subsequent ste
very small value of this factor, e.g., 1.01~recall that only the
values greater than 1 have meaning!, may result in a very
slow convergence in the case whenf(t) contains harmonics
with period>T. Large values of the factor, e.g.,>2, would
consume a lot of CPU time already during the second
third iteration and, hence, are not good for practical use.

Once the voltage averaging for currentg is complete, the
currentg is increased by a small amountdg50.005 to cal-
culate the voltages at the next point of the IVC. We use
distribution of the phases~and their derivatives! achieved in
the previous point of the IVC as the initial distribution fo
the following point.

A further description of the software used for simulatio
can be found in Ref. 15.

B. Two coupled junctions

For simulations we chose the following parameters of
system:S520.5 to be close to the limit of intrinsically lay
ered HTSs,J50.5 to let the fluxon accelerate above thec̄2

and develop Cherenkov radiation tail. The velocityc̄2 is the
smallest of the Swihart velocities of the system. It charac
izes the propagation of the out-of-phase mode of Joseph
plasma waves. The value ofa50.04 is chosen somewha
higher than, e.g., in (Nb-Al-AlOx)N-Nb stacks. This choice
is dictated by the need to keep the quasi-infinite approxim
tion valid and satisfy the conditionaL@1. A smallera re-
quires a very largeL and, therefore, unaffordably long simu
lation times. So we made a compromise and chose the ab
a value.

First, we simulated the IVCu(g) in the @1u0# state by
sweepingg from 0 up to 1 and making snapshots of th
phase gradients at every point of the IVC. This IVC is sho
in Fig. 1~a!, and the snapshot of the phase gradient ag
50.3 is presented in Fig. 1~b!. As one can see, the Chere
kov radiation tail, which is present foru. c̄2 , has a se-
quence of minima where the second fluxon may be trapp

1. †1¿1z0‡ state

In order to create a two-fluxon bunched state and check
stability, we used the following ‘‘solution-engineering’’ pro
cedure. By taking a snapshot of the phase profilesfA,B(x) at
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FIG. 1. ~a! The current-velocity characteristicu(g) for the fluxon moving in the@1u0# state~from left to right!. ~b! The profiles of the
phase gradientsfx

A,B(x) in the state@1u0# at g50.3, corresponding to the bias pointA shown in fig. ~a!. The Cherenkov tail, present a

u. c̄2'0.817, has a set of minima where the second fluxon can be trapped.~c! The profiles offx
A,B(x) in the state@2u0# at the same value

g50.3 as~b!. Two fluxons shown in Fig.~c! are almost undistinguishable.
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the bias valueg050.3, we constructed an ansatz for t
bunched solution in the form

fA,B
new~x!5fA,B~x!1fA,B~x1Dx!, ~8!

whereDx is chosen so that the center of the trailing fluxon
placed at one of the minima of the Cherenkov tail. For e
ample, to trap the trailing fluxon in the first, second, a
third wells, we usedDx50.9, Dx52.4, andDx53.9, re-
spectively. The phase distribution~and derivatives!, con-
structed in this way, were used as the initial condition
solving Eqs.~1! and ~2! numerically. As the system relaxe
to the desired state@111u0#, we further traced theu(g)
curve, varyingg down to 0 and up to 1.

We accomplished this procedure for a set ofDx values,
trying to trap the second fluxon in every well. Figure 1~c!
shows that a stable, tightly bunched state of two fluxons
indeed possible. Actually, all the@111u0# states obtained
this way have been found to be stable, and we were abl
trace their IVCs up and down, starting from the initial val
of the bias currentg50.3. For the case when the trailin
fluxon is trapped in the first, second, and third minima, su
IVCs are shown in Fig. 2.

The most interesting feature of these curves is that t
correspond to the velocity of the bunched state that ishigher
than that of the@1u0# state, at the same value of the bi
current. Comparing solutions shown in Figs. 1~b! and 1~c!,
we see that the amplitude of the trailing tail is smaller for t
bunched state. This circumstance suggests the following
planation of the fact that the observed velocity is higher
the state@111u0# than in the single-fluxon one. Because t
driving forces acting on two fluxons in the bunched and u
bunched states are the same, the difference in their veloc
can be attributed only to the difference in the friction force
The friction force acting on the fluxon in one junction is

Fa5aE
2`

1`

fxf tdx, ~9!

and the same holds for the other junction. By just looking
Figs. 1~b! and 1~c! it is rather difficult to tell in which case
-

r

is

to

h

y

x-

-
ies
.

t

the friction force is larger, but accurate calculations us
Eq. ~9! and profiles from Figs. 1~b! and 1~c! show that the
friction force acting on two fluxons with the tails shown
Fig. 1~b! is somewhat higher than that for Fig. 1~c!. This
result is not surprising if one recalls that, to create t
bunched state, we have shifted the@1u0# state by about half
of the tail oscillation period relative to the other singl
fluxon state. Due to this, the tails of the two fluxons add
out of phase and partly cancel each other, making the ta
amplitude behind the fluxon in the bunched state lower th
that in the@1u0# state.

From Fig. 2 it is seen that every bunched state exists
certain range of values of the bias current. If the curren
decreased below some threshold value, fluxons dissoc
and start moving apart, so that the interaction between th
becomes exponentially small. When the trailing fluxon sits
a minimum of the Cherenkov tail sufficiently far from th
leading fluxon, the IVC corresponding to this bunched st
is almost undistinguishable from that of the@1u0# state, as

FIG. 2. Current-velocity characteristics of different bunch
states@2u0#: the second fluxon is trapped in the first minimum
the tail ~state@1111u0#), the second minimum~state@1112u0#),
and the third minimum~state@1113u0#). The g(u) curve for the
@1u0# state is shown for comparison. The phase-gradient profi
corresponding to bias pointsA–D are shown in Fig. 3.



c

he
et
it
a

he
to
ti

s
th
b
flu
nd
n
he
vir

a
-

-

is

3,
r to
d
re
ct

t a
il-

ted
tate

b-

he
to

il-

les
t

-

h
er
the
tion
es

the
nt

nen-

he
po-

ed

as
d,
ine
bias
es,

on-

ing

tem

PRB 62 1417BUNCHING OF FLUXONS BY CHERENKOV RADIATION . . .
the two fluxons approach the limit when they do not intera
We have found that IVCs forM.3, whereM is the potential
well’s number, are indeed almost identical to that of t
@1u0# state. In contrast to the bunching of fluxons in discr
LJJs,9 the transitions from one bunched state to another w
differentM donot take place in our system. Thus, we can s
that the current range of a bunched state with smallerM
‘‘eclipses’’ the bunched states with largerM.

The profiles of solutions found for various values of t
bias current are shown in Fig. 3. We notice that at the bot
of the step corresponding to the bunched state the radia
tail is much weaker and fluxons are bunched tighter. Thi
a direct consequence of the fact that at lower velocities
radiation wavelength and the distance between minima
come smaller, and so does the distance between the two
ons. At a low bias current, the radiation wavelength a
hence, width of the potential wells become very small a
incommensurable with the fluxon’s width. Therefore, t
fluxon does not fit into the well and the bunched states
tually disappear.

2. †1z1‡ state

The initial condition for this state was constructed in
similar fashion to the@111u0# one, but now using a cross
sum of the shifted and unshifted solutions:

fA,B
new~x!5fA,B~x!1fB,A~x1Dx!. ~10!

If for the @111u0# stateDx were'(l2 1
2 )M , M51,2 . . . ,

then in the@1u1# state we have to takeDx'lM . We can
also takeM50, i.e., Dx50, which corresponds to the de

FIG. 3. The profiles of the phase gradientsfx
A,B(x) in the @2u0#

states at bias pointsA–D marked in Fig. 2.
t.

e
h
y

m
on
is
e
e-
x-
,

d

-

generate case of the in-phase@1u1# state. The stability of this
state was investigated in detail analytically by Gro”nbech-
Jensen and co-workers,16, and is outside the scope of th
paper.

Our efforts to create a bound state@1u1# using the phase
in the form~10! with M51,2 . . . havenot led to any stable
configuration of bunched fluxons withDxÞ0.

3. Higher-order states

Looking at the phase gradient profiles shown in Fig.
one notes that these profiles are qualitatively very simila
the original profile of the soliton with a radiation tail behin
it @see Fig. 1~b!#, with the only difference being that there a
two bunched solitons with a tail. So we can try to constru
two pairs of bunched fluxons moving together, i.e., ge
@212u0# bunched state. As before, the trapping of the tra
ing pair is possible in one of the minima of the tail genera
by the leading pair. To construct such a double-bunched s
we employ the initial conditions obtained using Eq.~8! at the
bias pointg050.3, using the steady phase distribution o
tained for the@2u0# state atg050.3. The shiftDx was cho-
sen in such a way that a pair of fluxons fits into one of t
minima of the tail. We note that in this case we needed
vary Dx a little bit before we achieved trapping of the tra
ing pair in a desired well.

Simulations show that the obtained@212u0# states are
stable and demonstrate an evenhigher velocity of the whole
four-fluxon aggregate. The corresponding IVCs and profi
are shown in Figs. 4~a! and 4~b!, respectively. Note that a
g,0.22 the bunched state@212u0# splits first into a@1
112113113u0# state~the subscripts denote the well’s num
berM, counting from the previous fluxon!, and at still lower
bias currentg,0.2, they split into two independent@1
112u0# and @1115u0# states. This two states move wit
slightly different velocities and can collide with each oth
due to the periodic nature of the system. As a result of
collisions, these states ultimately undergo a transforma
into two independent@1115u0# states. As the bias decreas
below'0.1, the velocityu becomes smaller thanc̄2 and the
Cherenkov radiation tails disappear. At this point, each of
@1115u0# states smoothly transforms into two independe
@1u0# states. The interaction between these states is expo
tially small, with a characteristic length;1 ~or lJ in physi-
cal units!. We note that the interaction between kinks in t
region u. c̄2 , where they have tails, also decreases ex
nentially, but with a larger characteristic length;a21.

The procedure of constructing higher-order bunch
states can be performed usingdifferent states as ‘‘building
blocks.’’ In particular, we also tried to form the@211u0#
bunched state. Note that if two different states are taken
building blocks, we need to match their velocities an
hence, the wavelengths of the tail. Thus, we have to comb
two states at the same velocity, rather than at the same
current. Since different states have their own velocity rang
it is not always possible. As an example, we have c
structed a@211u0# state out of a@2u0# state atg50.15 and
a @1u0# state atg50.45 using an ansatz similar to Eq.~8!.
These states have approximately the same velocityu'0.95
~see Fig. 2!. The constructed state was simulated, start
from the pointsg50.3 andg50.35, tracing the IVC up and
down as before. Depending on the bias current the sys
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FIG. 4. ~a! Current-velocity
characteristics of the bunche
states@4u0#,@3u0#, and@211u0#.
Phase profiles of the@4u0# state
and @3u0# state at g50.3 are
shown in~b! and~c!, respectively.
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ends up in different states—namely, in the state@1111
112u0# for g050.3 or in the state@1111111u0#5@3u0#
for g050.35. The IVCs of both states are shown in Fig.
The profiles of the phase gradients are shown in Fig. 4~c!.

Our attempts to construct the states with a higher num
of bunched fluxons, e.g.,@414u0#, have failed since four
fluxons do not fit into one well. We have concluded that su
states immediately get converted into one of the lower-or
states.

C. Three coupled junctions

We have performed numerical simulation of Eqs.~3! and
~4!, using the same technique as described in the prev
section. Our intention here is to study the three-junction c
in which the fluxon is put in the middle junction (@0u1u0#
state!. All other parameters were the same as in the c
of the two-junction system, except for the ratio of th
critical currentsJ, which was taken equal to 1. This simp
est choice is made because in a system ofN.2 coupled
identical junctions Cherenkov radiation appears in

@0u•••u0u1u0u•••u0# state foru. c̄2'0.765~this pertains to
S520.5).

Figure 5 shows the IVCs of the original state@0u1u0#, as
well as IVCs of the bunched state@0u111u0#, for M

FIG. 5. Current-velocity characteristics of the state@0u1u0#,
bunched state@0u111Mu0# for three different cases,M51,2,3, and
the state@0u3u0#. The profiles of the Josephson phase gradient
pointsA–D are shown in Fig. 6
.

er

h
r

us
e

e

51,2,3. The profiles of the phase gradients at pointsA–D
are shown in Fig. 6. Qualitatively, bunching in the threefo
system takes place in a similar fashion as that in the twof
system. Nevertheless, we did not succeed in creating a s
fluxon configuration withM53, although stable states wit
otherM were obtained. We would like to mention that whe
the second fluxon was put in the second minimum of
potential to get a state withM52, the state withM51 has
been finally established as a result of relaxation. The sa
behavior was observed when we put the fluxon initially
the third minimum; the system ended up in the state@1
112u0#. For M>4, the behavior was as usual. We tried
vary Dx smoothly, so that the center of the trailing fluxo
would correspond to different positions between the sec
and fourth wells, but in this case we did not succeed

at FIG. 6. The profiles of the Josephson phase gradientsfx
A,B(x) in

@0u111Mu0# states at pointsA–D marked in Fig. 5.
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obtaining the@1113u0# state.
Following the same approach as for two coupled ju

tions, we tried to construct@011u1u011# states. As in the
caseN52, these states were found to be unstable for
M.0; e.g., they would split into@0u1112u0# and @1u
21u1#. The state@0u212u0# was not stable either forM
51,2,3 and the bias currentsg050.20, 0.30, 0.35.

The state@0u211u0#5@0u3u0#, constructed by combin
ing solutions for the@0u1u0# and@0u2u0# states moving with
equal velocities, was found to be stable when starting ag
50.25 and sweeping the bias current up and down. The
pendenceu(g) is shown in Fig. 5. One may note that for th
states@0u2u0# and @0u3u0# the dependence is not smoot
Indeed, for these states the Cherenkov radiation tail is
long (;L), that our annular system cannot simulate an in
nitely long system, resulting in Cherenkov resonances wh
inevitably appear in the system of a finite perimeter.6,7

III. ANALYSIS AND DISCUSSION

Because of the nonlinear nature of the bunching probl
it is hardly tractable analytically. Therefore, we here pres
an approach in which we analyze the asymptotic behavio
the fluxon’s front and trailing tails in the linear approxim
tion. This technique is similar to that employed in Ref. 9. W
assume that, at distances which are large enough in com
son with the fluxon’s size, the fluxon’s profile is expone
tially decaying,

f~x,t !}exp@p~x2ut!#, ~11!

wherep is a complex number which can be found by subs
tuting this expression into Eqs.~1! and ~2!. As a result we
arrive at the equation

U p2

12S2
2p2u2212apu 2

Sp2

12S2

2
Sp2

12S2

p2

12S2
2p2u22

1

J
2apu

U50.

~12!

In general, this yields a fourth-order algebraic equat
which always has four roots. If we want to describe a soli
moving from left to right with a radiation tail behind it, w
have to find the valuesp among the four roots which ad
equately describe the front and rear parts of the soliton.
cause the front~right! part of the soliton is not oscillating, i
is described by Eq.~11! with real p,0. The rear~left! part
of the soliton is the oscillating tail; consequently it should
described by Eq.~11! with complexp having Re(p).0, the
period of oscillations being determined by the imaginary p
of p. Analyzing the fourth-order equation, we conclude th
the two necessary types of the roots coexist only foru

. c̄2 , which is quite an obvious result.
To analyze the possibility of bunched state formation,

consider two fluxons situated at some distance from e
other. We propose the following two conditions for the tw
fluxons to form a bunched state.

~i! Since nonoscillating tails result only in repulsion b
tween fluxons, while the oscillating tail leads to mutual tra
ping, the condition
-
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Re~pl !,upr u ~13!

can be imposed to secure bunching. Herepl is the root of Eq.
~12! which describes the left~oscillating! tail of the leading
~right! fluxon, andpr is the root of Eq.~12! which describes
the right ~nonoscillating! tail of the trailing ~left! fluxon.

~ii ! The relativistically contracted fluxon must fit int
the minimum of the tail, i.e.,

p

Im~p!
.Au2

c̄2
2

21, ~14!

wherep/Im(p) is half of the wavelength of the tail-forming
radiation~the well’s width!, and the expression on the RH
of Eq. ~14! approximately corresponds to the contraction
the fluxon at the trans-Swihart velocities. Although our sy
tem is not Lorentz invariant, numerical simulations show th
the fluxon indeed shrinks~not up to zero! when approaching
the Swihart velocityc̄2 from both sides.

Following this approach, we have found that the seco
condition ~14! is always satisfied. The first condition~13!
gives the following result. Bunching is possible atu.ub

. c̄2 . The value ofub can be calculated numerically, an
for S520.5, J50.5, anda50.04 it is ub50.837. Looking
at Fig. 2, we see that this velocity corresponds to the b
point where the@111Mu0# states cease to exist. Thus, o
crude approximation reasonably predicts the velocity ra
where the bunching is possible.

IV. CONCLUSION

In this work we have shown by means of numerical sim
lations the following.

~i! The emission of the Cherenkov plasma waves b
fluxon moving with high velocity creates an effective pote
tial with many wells, where other fluxons can be trappe
This mechanism leads to bunching between fluxons of
samepolarity.

~ii ! We have proved numerically that in the system
two and three coupled junctions the bunched states for
fluxons in thesamejunction such as@111u0#, @112u0#,
@212u0#, and@0u111u0# are stable. The states with fluxon
in different junctions like@1u011# and @011u1u011# are
numerically found to be unstable~except for the degenerate
caseM50, when@1u1# is a simple in-phase state!.

~iii ! Bunched fluxons propagate at a substantially hig
velocity than the corresponding free ones at the same
current, because of lower losses per fluxon.

~iv! When decreasing the bias current, transitions
tween the bunched states with different separations betw
fluxons were not found. This behavior differs from what
known about bunched states in a discrete system.9 In addi-
tion, a splitting of multifluxon states into the states wi
smaller numbers of bunched fluxons is observed.
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