2,284 research outputs found

    A step towards testing general relativity using weak gravitational lensing and redshift surveys

    Get PDF
    Using the linear theory of perturbations in General Relativity, we express a set of consistency relations that can be observationally tested with current and future large scale structure surveys. We then outline a stringent model-independent program to test gravity on cosmological scales. We illustrate the feasibility of such a program by jointly using several observables like peculiar velocities, galaxy clustering and weak gravitational lensing. After addressing possible observational or astrophysical caveats like galaxy bias and redshift uncertainties, we forecast in particular how well one can predict the lensing signal from a cosmic shear survey using an over-lapping galaxy survey. We finally discuss the specific physics probed this way and illustrate how f(R)f(R) gravity models would fail such a test.Comment: 12 pages, 10 figure

    Accelerating universe from F(T) gravity

    Full text link
    It is shown that the acceleration of the universe can be understood by considering a F(T) gravity models. For these F(T) gravity models, a variant of the accelerating cosmology reconstruction program is developed. Some explicit examples of F(T) are reconstructed from the background FRW expansion history.Comment: 13 pages, references adde

    Parametrization for the Scale Dependent Growth in Modified Gravity

    Full text link
    We propose a scale dependent analytic approximation to the exact linear growth of density perturbations in Scalar-Tensor (ST) cosmologies. In particular, we show that on large subhorizon scales, in the Newtonian gauge, the usual scale independent subhorizon growth equation does not describe the growth of perturbations accurately, as a result of scale-dependent relativistic corrections to the Poisson equation. A comparison with exact linear numerical analysis indicates that our approximation is a significant improvement over the standard subhorizon scale independent result on large subhorizon scales. A comparison with the corresponding results in the Synchronous gauge demonstrates the validity and consistency of our analysis.Comment: 10 pages, 5 figures. Minor modifications and references added to match published versio

    ALMA 1.3 Millimeter Map of the HD 95086 System

    Full text link
    Planets and minor bodies such as asteroids, Kuiper-belt objects and comets are integral components of a planetary system. Interactions among them leave clues about the formation process of a planetary system. The signature of such interactions is most prominent through observations of its debris disk at millimeter wavelengths where emission is dominated by the population of large grains that stay close to their parent bodies. Here we present ALMA 1.3 mm observations of HD 95086, a young early-type star that hosts a directly imaged giant planet b and a massive debris disk with both asteroid- and Kuiper-belt analogs. The location of the Kuiper-belt analog is resolved for the first time. The system can be depicted as a broad (ΔR/R\Delta R/R \sim0.84), inclined (30\arcdeg±\pm3\arcdeg) ring with millimeter emission peaked at 200±\pm6 au from the star. The 1.3 mm disk emission is consistent with a broad disk with sharp boundaries from 106±\pm6 to 320±\pm20 au with a surface density distribution described by a power law with an index of --0.5±\pm0.2. Our deep ALMA map also reveals a bright source located near the edge of the ring, whose brightness at 1.3 mm and potential spectral energy distribution are consistent with it being a luminous star-forming galaxy at high redshift. We set constraints on the orbital properties of planet b assuming co-planarity with the observed disk.Comment: accepted for publication in A

    Phase-Space analysis of Teleparallel Dark Energy

    Full text link
    We perform a detailed dynamical analysis of the teleparallel dark energy scenario, which is based on the teleparallel equivalent of General Relativity, in which one adds a canonical scalar field, allowing also for a nonminimal coupling with gravity. We find that the universe can result in the quintessence-like, dark-energy-dominated solution, or to the stiff dark-energy late-time attractor, similarly to standard quintessence. However, teleparallel dark energy possesses an additional late-time solution, in which dark energy behaves like a cosmological constant, independently of the specific values of the model parameters. Finally, during the evolution the dark energy equation-of-state parameter can be either above or below -1, offering a good description for its observed dynamical behavior and its stabilization close to the cosmological-constant value.Comment: 23 pages, 4 figures, 5 tables, version published at JCA

    New Debris Disks Around Nearby Main Sequence Stars: Impact on The Direct Detection of Planets

    Get PDF
    Using the MIPS instrument on the Spitzer telescope, we have searched for infrared excesses around a sample of 82 stars, mostly F, G, and K main-sequence field stars, along with a small number of nearby M stars. These stars were selected for their suitability for future observations by a variety of planet-finding techniques. These observations provide information on the asteroidal and cometary material orbiting these stars - data that can be correlated with any planets that may eventually be found. We have found significant excess 70um emission toward 12 stars. Combined with an earlier study, we find an overall 70um excess detection rate of 13±313 \pm 3% for mature cool stars. Unlike the trend for planets to be found preferentially toward stars with high metallicity, the incidence of debris disks is uncorrelated with metallicity. By newly identifying 4 of these stars as having weak 24um excesses (fluxes \sim10% above the stellar photosphere), we confirm a trend found in earlier studies wherein a weak 24um excess is associated with a strong 70um excess. Interestingly, we find no evidence for debris disks around 23 stars cooler than K1, a result that is bolstered by a lack of excess around any of the 38 K1-M6 stars in 2 companion surveys. One motivation for this study is the fact that strong zodiacal emission can make it hard or impossible to detect planets directly with future observatories like the {\it Terrestrial Planet Finder (TPF)}. The observations reported here exclude a few stars with very high levels of emission, >>1,000 times the emission of our zodiacal cloud, from direct planet searches. For the remainder of the sample, we set relatively high limits on dust emission from asteroid belt counterparts

    Thermodynamics of cosmological horizons in f(T)f(T) gravity

    Full text link
    We explore thermodynamics of the apparent horizon in f(T)f(T) gravity with both equilibrium and non-equilibrium descriptions. We find the same dual equilibrium/non-equilibrium formulation for f(T)f(T) as for f(R)f(R) gravity. In particular, we show that the second law of thermodynamics can be satisfied for the universe with the same temperature of the outside and inside the apparent horizon.Comment: 18 pages, no figure, version accepted for publication in JCA

    Extended Birkhoff's Theorem in the f(T) Gravity

    Full text link
    The f(T) theory, a generally modified teleparallel gravity, has been proposed as an alternative gravity model to account for the dark energy phenomena. Following our previous work [Xin-he Meng and Ying-bin Wang, EPJC(2011), arXiv:1107.0629v1], we prove that the Birkhoff's theorem holds in a more general context, specifically with the off diagonal tetrad case, in this communication letter. Then, we discuss respectively the results of the external vacuum and internal gravitational field in the f(T) gravity framework, as well as the extended meaning of this theorem. We also investigate the validity of the Birkhoff's theorem in the frame of f(T) gravity via conformal transformation by regarding the Brans-Dicke-like scalar as effective matter, and study the equivalence between both Einstein frame and Jordan frame.Comment: 7 pages, 1 figure, submitted to EPJ-C. arXiv admin note: substantial text overlap with arXiv:1107.062

    ALMA Long Baseline Observations of the Strongly Lensed Submillimeter Galaxy HATLAS J090311.6+003906 at z=3.042

    Get PDF
    We present initial results of very high resolution Atacama Large Millimeter/submillimeter Array (ALMA) observations of the zz=3.042 gravitationally lensed galaxy HATLAS J090311.6+003906 (SDP.81). These observations were carried out using a very extended configuration as part of Science Verification for the 2014 ALMA Long Baseline Campaign, with baselines of up to 15 km. We present continuum imaging at 151, 236 and 290 GHz, at unprecedented angular resolutions as fine as 23 milliarcseconds (mas), corresponding to an un-magnified spatial scale of ~180 pc at z=3.042. The ALMA images clearly show two main gravitational arc components of an Einstein ring, with emission tracing a radius of ~1.5". We also present imaging of CO(10-9), CO(8-7), CO(5-4) and H2O line emission. The CO emission, at an angular resolution of ~170 mas, is found to broadly trace the gravitational arc structures but with differing morphologies between the CO transitions and compared to the dust continuum. Our detection of H2O line emission, using only the shortest baselines, provides the most resolved detection to date of thermal H2O emission in an extragalactic source. The ALMA continuum and spectral line fluxes are consistent with previous Plateau de Bure Interferometer and Submillimeter Array observations despite the impressive increase in angular resolution. Finally, we detect weak unresolved continuum emission from a position that is spatially coincident with the center of the lens, with a spectral index that is consistent with emission from the core of the foreground lensing galaxy.Comment: 9 pages, 5 figures and 3 tables, accepted for publication in the Astrophysical Journal Letter

    Existence of relativistic stars in f(T) gravity

    Full text link
    We examine the existence of relativistic stars in f(T) modified gravity and explicitly construct several classes of static perfect fluid solutions. We derive the conservation equation from the complete f(T) gravity field equations and present the differences with its teleparallel counterpart. Firstly, we choose the tetrad field in the diagonal gauge and study the resulting field equations. Some exact solutions are explicitly constructed and it is noted that these solutions have to give a constant torsion scalar. Next, we choose a non diagonal tetrad field which results in field equations similar to those of general relativity. For specific models we are able to construct exact solutions of these field equations. Among those new classes of solutions, we find negative pressure solutions, and an interesting class of polynomial solutions.Comment: 19 pages; substantially revised and extended version, off diagonal tetrad discussion adde
    corecore