9,846 research outputs found

    CENP-A Is Dispensable for Mitotic Centromere Function after Initial Centromere/Kinetochore Assembly

    Get PDF
    Human centromeres are defined by chromatin containing the histone H3 variant CENP-A assembled onto repetitive alphoid DNA sequences. By inducing rapid, complete degradation of endogenous CENP-A, we now demonstrate that once the first steps of centromere assembly have been completed in G1/S, continued CENP-A binding is not required for maintaining kinetochore attachment to centromeres or for centromere function in the next mitosis. Degradation of CENP-A prior to kinetochore assembly is found to block deposition of CENP-C and CENP-N, but not CENP-T, thereby producing defective kinetochores and failure of chromosome segregation. Without the continuing presence of CENP-A, CENP-B binding to alphoid DNA sequences becomes essential to preserve anchoring of CENP-C and the kinetochore to each centromere. Thus, there is a reciprocal interdependency of CENP-A chromatin and the underlying repetitive centromere DNA sequences bound by CENP-B in the maintenance of human chromosome segregation

    Fluctuation-Facilitated Charge Migration along DNA

    Full text link
    We propose a model Hamiltonian for charge transfer along the DNA double helix with temperature driven fluctuations in the base pair positions acting as the rate limiting factor for charge transfer between neighboring base pairs. We compare the predictions of the model with the recent work of J.K. Barton and A.H. Zewail (Proc.Natl.Acad.Sci.USA, {\bf 96}, 6014 (1999)) on the unusual two-stage charge transfer of DNA.Comment: 4 pages, 2 figure

    A photometric survey for Lyalpha-HeII dual emitters: Searching for Population III stars in high-redshift galaxies

    Full text link
    We present a new photometric search for high-z galaxies hosting Population III (PopIII) stars based on deep intermediate-band imaging observations obtained in the Subaru Deep Field (SDF), by using Suprime-Cam on the Subaru Telescope. By combining our new data with the existing broad-band and narrow-band data, we searched for galaxies which emit strongly both in Ly_alpha and in HeII 1640 (``dual emitters'') that are promising candidates for PopIII-hosting galaxies, at 3.93<z<4.01 and 4.57<z<4.65. Although we found 10 ``dual emitters'', most of them turn out to be [OII]-[OIII] dual emitters or H_beta-(H_alpha+[NII]) dual emitters at z<1, as inferred from their broad-band colors and from the ratio of the equivalent widths. No convincing candidate of Ly_alpha-HeII dual emitter of SFR_PopIII > 2 Msun/yr was found by our photometric search in 4.03 x 10^5 Mpc^3 in the SDF. This result disfavors low feedback models for PopIII star clusters, and implies an upper-limit of the PopIII SFR density of SFRD_PopIII < 5 x 10^-6 Msun/yr/Mpc^3. This new selection method to search for PopIII-hosting galaxies should be useful in future narrow-band surveys to achieve the first observational detection of PopIII-hosting galaxies at high redshifts.Comment: 24 pages, 10 figures, accepted for publication in Ap

    Studies of SARS virus vaccines

    Get PDF
    1. Intranasal vaccination using inactivated SARS coronavirus (SARS-CoV) vaccine with adjuvant can induce strong systemic (serum immunoglobulin [Ig] G) and respiratory tract local (tracheal-lung wash fluid IgA) antibody responses with neutralising activity. 2. RBD-Fc (protein-based vaccine) is able to induce effective neutralising antibodies able to provide protection from SARS-CoV infection in animal models. 3. A single dose of RBD-rAAV vaccination can induce adequate neutralising antibody against SARS-CoV infection. 4. Additional doses of vaccine increased the production of neutralising antibody 5-fold compared with a single dose. 5. RBD-rAAV vaccination provoked a prolonged antibody response with continually increasing levels of neutralising activity. 6. Intranasal vaccination with RBD-rAAV induced local IgA and systemic IgG neutralising antibodies and specific T-cell responses, able to protect against SARS-CoV infection in animal models. 7. When compared with the RBD-rAAV prime/boost vaccination, RBD-rAAV prime/RBD-peptide boost induced similar levels of Th1 and neutralising antibody responses that protected vaccinated mice from subsequent SARS-CoV challenges,but stronger Th2 and CTL responses. 8. Overall, our findings suggest that the inactivated vaccine, RBD-Fc and RBD-rAAV, can be further developed into effective and safe vaccines against SARS and that intranasal vaccination may be the preferred route of administration.published_or_final_versio

    Studies of SARS virus vaccines

    Get PDF
    1. Intranasal vaccination using inactivated SARS coronavirus (SARS-CoV) vaccine with adjuvant can induce strong systemic (serum immunoglobulin [Ig] G) and respiratory tract local (tracheal-lung wash fluid IgA) antibody responses with neutralising activity. 2. RBD-Fc (protein-based vaccine) is able to induce effective neutralising antibodies able to provide protection from SARS-CoV infection in animal models. 3. A single dose of RBD-rAAV vaccination can induce adequate neutralising antibody against SARS-CoV infection. 4. Additional doses of vaccine increased the production of neutralising antibody 5-fold compared with a single dose. 5. RBD-rAAV vaccination provoked a prolonged antibody response with continually increasing levels of neutralising activity. 6. Intranasal vaccination with RBD-rAAV induced local IgA and systemic IgG neutralising antibodies and specific T-cell responses, able to protect against SARS-CoV infection in animal models. 7. When compared with the RBD-rAAV prime/boost vaccination, RBD-rAAV prime/RBD-peptide boost induced similar levels of Th1 and neutralising antibody responses that protected vaccinated mice from subsequent SARS-CoV challenges,but stronger Th2 and CTL responses. 8. Overall, our findings suggest that the inactivated vaccine, RBD-Fc and RBD-rAAV, can be further developed into effective and safe vaccines against SARS and that intranasal vaccination may be the preferred route of administration.published_or_final_versio

    Inhibitors of One or More Cellular Aurora Kinases Impair the Replication of Herpes Simplex Virus 1 and Other DNA and RNA Viruses with Diverse Genomes and Life Cycles

    Get PDF
    We utilized a high-throughput cell-based assay to screen several chemical libraries for inhibitors of herpes simplex virus 1 (HSV-1) gene expression. From this screen, four aurora kinase inhibitors were identified that potently reduced gene expression during HSV-1 lytic infection. HSV-1 is known to interact with cellular kinases to regulate gene expression by modulating the phosphorylation and/or activities of viral and cellular proteins. To date, the role of aurora kinases in HSV-1 lytic infection has not been reported. We demonstrated that three aurora kinase inhibitors strongly reduced the transcript levels of immediate-early (IE) genes ICP0, ICP4, and ICP27 and impaired HSV-1 protein expression from all classes of HSV-1, including ICP0, ICP4, ICP8, and gC. These restrictions caused by the aurora kinase inhibitors led to potent reductions in HSV-1 viral replication. The compounds TAK 901, JNJ 7706621, and PF 03814735 decreased HSV-1 titers by 4,500-, 13,200-, and 8,400-fold, respectively, when present in a low micromolar range. The antiviral activity of these compounds correlated with an apparent decrease in histone H3 phosphorylation at serine 10 (H3S10ph) during viral infection, suggesting that the phosphorylation status of H3 influences HSV-1 gene expression. Furthermore, we demonstrated that the aurora kinase inhibitors also impaired the replication of other RNA and DNA viruses. These inhibitors significantly reduced yields of vaccinia virus (a poxvirus, double-stranded DNA, cytoplasmic replication) and mouse hepatitis virus (a coronavirus, positive-sense single-strand RNA [ssRNA]), whereas vesicular stomatitis virus (rhabdovirus, negative-sense ssRNA) yields were unaffected. These results indicated that the activities of aurora kinases play pivotal roles in the life cycles of diverse viruses

    Atomic-scale combination of germanium-zinc nanofibers for structural and electrochemical evolution

    Get PDF
    Alloys are recently receiving considerable attention in the community of rechargeable batteries as possible alternatives to carbonaceous negative electrodes; however, challenges remain for the practical utilization of these materials. Herein, we report the synthesis of germanium-zinc alloy nanofibers through electrospinning and a subsequent calcination step. Evidenced by in situ transmission electron microscopy and electrochemical impedance spectroscopy characterizations, this one-dimensional design possesses unique structures. Both germanium and zinc atoms are homogenously distributed allowing for outstanding electronic conductivity and high available capacity for lithium storage. The as-prepared materials present high rate capability (capacity of similar to 50% at 20 C compared to that at 0.2 C-rate) and cycle retention (73% at 3.0 C-rate) with a retaining capacity of 546 mAh g(-1) even after 1000 cycles. When assembled in a full cell, high energy density can be maintained during 400 cycles, which indicates that the current material has the potential to be used in a large-scale energy storage system

    A review of physical supply and EROI of fossil fuels in China

    Get PDF
    This paper reviews China’s future fossil fuel supply from the perspectives of physical output and net energy output. Comprehensive analyses of physical output of fossil fuels suggest that China’s total oil production will likely reach its peak, at about 230 Mt/year (or 9.6 EJ/year), in 2018; its total gas production will peak at around 350 Bcm/year (or 13.6 EJ/year) in 2040, while coal production will peak at about 4400 Mt/year (or 91.9 EJ/year) around 2020 or so. In terms of the forecast production of these fuels, there are significant differences among current studies. These differences can be mainly explained by different ultimately recoverable resources assumptions, the nature of the models used, and differences in the historical production data. Due to the future constraints on fossil fuels production, a large gap is projected to grow between domestic supply and demand, which will need to be met by increasing imports. Net energy analyses show that both coal and oil and gas production show a steady declining trend of EROI (energy return on investment) due to the depletion of shallow-buried coal resources and conventional oil and gas resources, which is generally consistent with the approaching peaks of physical production of fossil fuels. The peaks of fossil fuels production, coupled with the decline in EROI ratios, are likely to challenge the sustainable development of Chinese society unless new abundant energy resources with high EROI values can be found

    Dark-adapted red flash ERGs in healthy adults

    Get PDF
    Purpose: The x-wave of the dark-adapted (DA) ERG to a red flash reflects DA cone function. This exploratory study of healthy adults aimed to investigate changes in the DA red ERG with flash strength and during dark adaptation to optimise visualisation and therefore quantification of the x-wave. Methods: The effect of altering red flash strength was investigated in four subjects by recording ERGs after 20 minutes dark adaptation to red flashes (0.2–2.0 cd s m-2) using skin electrodes and natural pupils. The effect of dark adaptation duration was investigated in 16 subjects during 20 minutes in the dark, by recording DA 1.5 red ERGs at 1, 2, 3, 4, 5, 10, 15 and 20 minutes. Results: For a dark adaption period of 20 minutes, the x-wave was more clearly visualised to weaker (&lt; 0.6 cd s m-2) red flash strengths: to stronger flashes it became obscured by the b-wave. For red flashes of 1.5 cd s m-2, the x-wave was most prominent in ERGs recorded after 1–5 minutes of dark adaptation: with longer dark-adaptation, it was subsumed into the b-wave’s rising edge. Conclusions: This small study suggests that x-wave visibility in healthy subjects after 20 minutes dark adaptation is improved by using flashes weaker than around 0.6 cd s m-2; for flash strengths of 1.5 cd s m-2, x-wave visibility is enhanced by recording after only around 5 minutes of dark adaptation. No evidence was found that interim red flash ERGs affecting the dark-adapted state of the normal retina

    Clinical significance of VEGF-A, -C and -D expression in esophageal malignancies

    Get PDF
    Vascular endothelial growth factors ( VEGF)- A, - C and - D are members of the proangiogenic VEGF family of glycoproteins. VEGF-A is known to be the most important angiogenic factor under physiological and pathological conditions, while VEGF-C and VEGF-D are implicated in the development and sprouting of lymphatic vessels, so called lymphangiogenesis. Local tumor progression, lymph node metastases and hematogenous tumor spread are important prognostic factors for esophageal carcinoma ( EC), one of the most lethal malignancies throughout the world. We found solid evidence in the literature that VEGF expression contributes to tumor angiogenesis, tumor progression and lymph node metastasis in esophageal squamous cell carcinoma ( SCC), and many authors could show a prognostic value for VEGF-assessment. In adenocarcinoma (AC) of the esophagus angiogenic properties are acquired in early stages, particularly in precancerous lesions like Barrett's dysplasia. However, VEGF expression fails to give prognostic information in AC of the esophagus. VEGF-C and VEGF-D were detected in SCC and dysplastic lesions, but not in normal mucosa of the esophagus. VEGF-C expression might be associated with lymphatic tumor invasion, lymph node metastases and advanced disease in esophageal SCC and AC. Therapeutic interference with VEGF signaling may prove to be a promising way of anti-angiogenic co-treatment in esophageal carcinoma. However, concrete clinical data are still pending
    corecore