13,266 research outputs found

    Learning Convex Partitions and Computing Game-theoretic Equilibria from Best Response Queries

    Full text link
    Suppose that an mm-simplex is partitioned into nn convex regions having disjoint interiors and distinct labels, and we may learn the label of any point by querying it. The learning objective is to know, for any point in the simplex, a label that occurs within some distance ϵ\epsilon from that point. We present two algorithms for this task: Constant-Dimension Generalised Binary Search (CD-GBS), which for constant mm uses poly(n,log(1ϵ))poly(n, \log \left( \frac{1}{\epsilon} \right)) queries, and Constant-Region Generalised Binary Search (CR-GBS), which uses CD-GBS as a subroutine and for constant nn uses poly(m,log(1ϵ))poly(m, \log \left( \frac{1}{\epsilon} \right)) queries. We show via Kakutani's fixed-point theorem that these algorithms provide bounds on the best-response query complexity of computing approximate well-supported equilibria of bimatrix games in which one of the players has a constant number of pure strategies. We also partially extend our results to games with multiple players, establishing further query complexity bounds for computing approximate well-supported equilibria in this setting.Comment: 38 pages, 7 figures, second version strengthens lower bound in Theorem 6, adds footnotes with additional comments and fixes typo

    The Spin Holonomy Group In General Relativity

    Full text link
    It has recently been shown by Goldberg et al that the holonomy group of the chiral spin-connection is preserved under time evolution in vacuum general relativity. Here, the underlying reason for the time-independence of the holonomy group is traced to the self-duality of the curvature 2-form for an Einstein space. This observation reveals that the holonomy group is time-independent not only in vacuum, but also in the presence of a cosmological constant. It also shows that once matter is coupled to gravity, the "conservation of holonomy" is lost. When the fundamental group of space is non-trivial, the holonomy group need not be connected. For each homotopy class of loops, the holonomies comprise a coset of the full holonomy group modulo its connected component. These cosets are also time-independent. All possible holonomy groups that can arise are classified, and examples are given of connections with these holonomy groups. The classification of local and global solutions with given holonomy groups is discussed.Comment: 21 page

    The Inverse Shapley Value Problem

    Full text link
    For ff a weighted voting scheme used by nn voters to choose between two candidates, the nn \emph{Shapley-Shubik Indices} (or {\em Shapley values}) of ff provide a measure of how much control each voter can exert over the overall outcome of the vote. Shapley-Shubik indices were introduced by Lloyd Shapley and Martin Shubik in 1954 \cite{SS54} and are widely studied in social choice theory as a measure of the "influence" of voters. The \emph{Inverse Shapley Value Problem} is the problem of designing a weighted voting scheme which (approximately) achieves a desired input vector of values for the Shapley-Shubik indices. Despite much interest in this problem no provably correct and efficient algorithm was known prior to our work. We give the first efficient algorithm with provable performance guarantees for the Inverse Shapley Value Problem. For any constant \eps > 0 our algorithm runs in fixed poly(n)(n) time (the degree of the polynomial is independent of \eps) and has the following performance guarantee: given as input a vector of desired Shapley values, if any "reasonable" weighted voting scheme (roughly, one in which the threshold is not too skewed) approximately matches the desired vector of values to within some small error, then our algorithm explicitly outputs a weighted voting scheme that achieves this vector of Shapley values to within error \eps. If there is a "reasonable" voting scheme in which all voting weights are integers at most \poly(n) that approximately achieves the desired Shapley values, then our algorithm runs in time \poly(n) and outputs a weighted voting scheme that achieves the target vector of Shapley values to within error $\eps=n^{-1/8}.

    An Empirical Study of Finding Approximate Equilibria in Bimatrix Games

    Full text link
    While there have been a number of studies about the efficacy of methods to find exact Nash equilibria in bimatrix games, there has been little empirical work on finding approximate Nash equilibria. Here we provide such a study that compares a number of approximation methods and exact methods. In particular, we explore the trade-off between the quality of approximate equilibrium and the required running time to find one. We found that the existing library GAMUT, which has been the de facto standard that has been used to test exact methods, is insufficient as a test bed for approximation methods since many of its games have pure equilibria or other easy-to-find good approximate equilibria. We extend the breadth and depth of our study by including new interesting families of bimatrix games, and studying bimatrix games upto size 2000×20002000 \times 2000. Finally, we provide new close-to-worst-case examples for the best-performing algorithms for finding approximate Nash equilibria

    Exciton mediated one phonon resonant Raman scattering from one-dimensional systems

    Full text link
    We use the Kramers-Heisenberg approach to derive a general expression for the resonant Raman scattering cross section from a one-dimensional (1D) system explicitly accounting for excitonic effects. The result should prove useful for analyzing the Raman resonance excitation profile lineshapes for a variety of 1D systems including carbon nanotubes and semiconductor quantum wires. We apply this formalism to a simple 1D model system to illustrate the similarities and differences between the free electron and correlated electron-hole theories.Comment: 10 pages, 6 figure

    A self-organizing random immigrants genetic algorithm for dynamic optimization problems

    Get PDF
    This is the post-print version of the article. The official published version can be obtained from the link below - Copyright @ 2007 SpringerIn this paper a genetic algorithm is proposed where the worst individual and individuals with indices close to its index are replaced in every generation by randomly generated individuals for dynamic optimization problems. In the proposed genetic algorithm, the replacement of an individual can affect other individuals in a chain reaction. The new individuals are preserved in a subpopulation which is defined by the number of individuals created in the current chain reaction. If the values of fitness are similar, as is the case with small diversity, one single replacement can affect a large number of individuals in the population. This simple approach can take the system to a self-organizing behavior, which can be useful to control the diversity level of the population and hence allows the genetic algorithm to escape from local optima once the problem changes due to the dynamics.This work was supported by FAPESP (Proc. 04/04289-6)

    Not Just a Theory—The Utility of Mathematical Models in Evolutionary Biology

    Get PDF
    Models have made numerous contributions to evolutionary biology, but misunderstandings persist regarding their purpose. By formally testing the logic of verbal hypotheses, proof-of-concept models clarify thinking, uncover hidden assumptions, and spur new directions of study. thumbnail image credit: modified from the Biodiversity Heritage Librar

    Chirality dependence of the radial breathing phonon mode density in single wall carbon nanotubes

    Full text link
    A mass and spring model is used to calculate the phonon mode dispersion for single wall carbon nanotubes (SWNTs) of arbitrary chirality. The calculated dispersions are used to determine the chirality dependence of the radial breathing phonon mode (RBM) density. Van Hove singularities, usually discussed in the context of the single particle electronic excitation spectrum, are found in the RBM density of states with distinct qualitative differences for zig zag, armchair and chiral SWNTs. The influence the phonon mode density has on the two phonon resonant Raman scattering cross-section is discussed.Comment: 6 pages, 2 figures, submitted to Phys. Rev.

    Suppression of geometrical barrier in Bi2Sr2CaCu2O8+δBi_2Sr_2CaCu_2O_{8+\delta} crystals by Josephson vortex stacks

    Full text link
    Differential magneto-optics are used to study the effect of dc in-plane magnetic field on hysteretic behavior due to geometrical barriers in Bi2Sr2CaCu2O8+δBi_2Sr_2CaCu_2O_{8+\delta} crystals. In absence of in-plane field a vortex dome is visualized in the sample center surrounded by barrier-dominated flux-free regions. With in-plane field, stacks of Josephson vortices form vortex chains which are surprisingly found to protrude out of the dome into the vortex-free regions. The chains are imaged to extend up to the sample edges, thus providing easy channels for vortex entry and for drain of the dome through geometrical barrier, suppressing the magnetic hysteresis. Reduction of the vortex energy due to crossing with Josephson vortices is evaluated to be about two orders of magnitude too small to account for the formation of the protruding chains. We present a model and numerical calculations that qualitatively describe the observed phenomena by taking into account the demagnetization effects in which flux expulsion from the pristine regions results in vortex focusing and in the chain protrusion. Comparative measurements on a sample with narrow etched grooves provide further support to the proposed model.Comment: 12 figures (low res.) Higher resolution figures are available at the Phys Rev B version. Typos correcte
    corecore