20 research outputs found

    Multiferroic behavior in the new double-perovskite Lu2_2MnCoO6_6

    Full text link
    We present a new member of the multiferroic oxides, Lu2_2MnCoO6_6, which we have investigated using X-ray diffraction, neutron diffraction, specific heat, magnetization, electric polarization, and dielectric constant measurements. This material possesses an electric polarization strongly coupled to a net magnetization below 35 K, despite the antiferromagnetic ordering of the S=3/2S = 3/2 Mn4+^{4+} and Co2+^{2+} spins in an ↑↑↓↓\uparrow \uparrow \downarrow \downarrow configuration along the c-direction. We discuss the magnetic order in terms of a condensation of domain boundaries between ↑↑\uparrow \uparrow and ↓↓\downarrow \downarrow ferromagnetic domains, with each domain boundary producing a net electric polarization due to spatial inversion symmetry breaking. In an applied magnetic field the domain boundaries slide, controlling the size of the net magnetization, electric polarization, and magnetoelectric coupling

    SĂ­ntesis hidrotermal de monocristales LnMn<sub>2</sub>O<sub>5</sub> (Ln= Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho y Er)

    No full text
    Ten single crystals of the series LnMn<sub>2</sub>O<sub>5</sub> (Ln= Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho and Er) were synthesized by hydrothermal synthesis in a single step and without subsequent thermal treatments from aqueous solutions of metals salts at 240 <sup>Âș</sup>C. The obtained single crystals have a size of various micrometers and their morphology changes throughout the serie: they are polygonal in the case of the compounds with Ln= Pr, Nd, Sm, Eu and Gd and needle-like in the case of the compounds with Ln= Y, Tb, Dy, Ho and Er. After the analysis of the obtained products employing different conditions of synthesis we attributed the different morphology to a greater growth rate along the c axis when the smaller ions (Y, Tb, Dy, Ho y Er) are involved, due to their better adaptation to the compound’s crystal structure.<br><br>Se han conseguido preparar monocristales de 10 Ăłxidos mixtos de la serie LnMn<sub>2</sub>O<sub>5</sub> (Ln= Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho y Er) mediante sĂ­ntesis hidrotermal optimizada, en un Ășnico paso y sin tratamientos tĂ©rmicos posteriores partiendo de las correspondientes sales metĂĄlicas en disoluciĂłn acuosa a 240 <sup>Âș</sup>C. Los monocristales obtenidos son relativamente grandes, de varias micras y su morfologĂ­a varĂ­a a lo largo de la serie: es poligonal en el caso de los compuestos de los lantĂĄnidos del inicio de la serie (Ln= Pr, Nd, Sm, Eu y Gd) y acicular en el caso de los compuestos de Y y de los lantĂĄnidos del final de la serie (Ln= Tb, Dy, Ho y Er). Tras el anĂĄlisis de los productos obtenidos empleando distintas condiciones de sĂ­ntesis atribuimos la diferente morfologĂ­a a una mayor velocidad de crecimiento cristalino a lo largo del eje c cuando intervienen los iones mĂĄs pequeños (Y, Tb, Dy, Ho y Er) debido a la mejor adaptaciĂłn de Ă©stos Ășltimos a la estructura cristalina del compuesto

    Near room temperature dielectric transition in the perovskite formate framework [(CH(3))(2)NH(2)][Mg(HCOO)(3)].

    Get PDF
    We report that the hybrid organic-inorganic compound [(CH(3))(2)NH(2)][Mg(HCOO)(3)] shows a marked dielectric transition around T(t) ∌ 270 K, associated to a structural phase transition from SG R3[combining macron]c (centrosymmetric) to Cc (non-centrosymmetric). This is the highest T(t) reported so far for a perovskite-like formate that is thus a promising candidate to display electric order very close to room temperature

    A simple in situ synthesis of magnetic M@CNTs by thermolysis of the hybrid perovskite = TPrA[M(dca)3

    No full text
    In this work, the incorporation of dicyanamide building blocks in organic–inorganic hybrid compounds is found to be a promising strategy for the synthesis of multiwalled carbon nanotubes embedded with magnetic nanoparticles (M@CNTs). Following a novel one-step, scalable and fast synthetic route, M@CNTs are obtained by simple calcination of the organic–inorganic hybrid perovskite [TPrA][M(dca)3] (TPrA = tetrapropylammonium, M = Ni2+ and Co2+, dca = dicyanamide). The resulting M@CNTs (M = Ni and Co) display a regular morphology and an essentially mesoporous network of ∌250 m2 g−1, whereas the Co@CNT composite displays a broad pore size distribution (PSD) up to 6 nm, Ni@CNTs show a strictly controlled unimodal PSD, centered at around 5 nm. Monitoring of their thermal decomposition by X-ray diffraction, electron microscopy, thermogravimetric and spectroscopic analyses allows proposing a calcination mechanism and establishing the conditions to obtain optimal materials. Moreover, magnetization studies reveal a ferromagnetic behaviour of the obtained M@CNTs, with small coercive fields due to the size of the magnetic nanoparticles. In addition, preliminary assays of oil adsorption–desorption capacity reveal a promising potential for spilled oil recovery using this easily-synthesized materials. All these physicochemical properties make these composites good candidates for other nitrogen-rich CNT common applications.The authors are grateful for the financial support from Ministerio de EconomĂ­a y Competitividad MINECO and EU‐FEDER under project ENE2014‐56237‐C4‐4‐R and Xunta de Galicia under project GRC2014/042. J. M. B.‐G. wants to thanks BarriĂ© Foundation for a predoctoral fellowship and S. Y.‐V. to the Xunta de Galicia for a postdoctoral fellowshipPeer reviewe

    Exploration of magnetic order in Pr<mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:msub><mml:mrow/><mml:mrow><mml:mn>0.5</mml:mn></mml:mrow></mml:msub></mml:math>Ca<mml:math altimg="si2.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:msub><mml:mrow/><mml:mrow><mml:mn>0.5</mml:mn></mml:mrow></mml:msub></mml:math>CoO<mml:math altimg="si3.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:msub><mml:mrow/><mml:mrow><mml:mn>3</mml:mn><mml:mi>ÎŽ</mml:mi></mml:mrow></mml:msub></mml:math> (<mml:math altimg="si4.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mi>ÎŽ</mml:mi><mml:mo>=</mml:mo><mml:mn>0</mml:mn></mml:math>) below the metal-insulator transition

    No full text
    corecore