243 research outputs found

    OC 8510 BIOTRANSFORMATION OF PRAZIQUANTEL FOR THE PHARMACOKINETIC OPTIMISATION OF PRAZIQUANTEL USE IN MASS DRUG ADMINISTRATION AND DEVELOPMENT OF NEW PAEDIATRIC FORMULATIONS

    Get PDF
    BackgroundPraziquantel (PZQ) is the only drug available for the treatment of all forms of schistosomiasis. New paediatric formulations for the active enantiomer R-PZQ and the racemate PZQ are currently under development. There is however limited drug metabolism and pharmacokinetic data on PZQ available to support these initiatives. Detailed knowledge of PZQ metabolism will enable the use of PBPK modelling to determine appropriate doses for the new formulations in paediatric patients and to predict risks for drug-drug interactions in mass drug administration.MethodsBiotransformation studies on PZQ were conducted in human liver microsomes and recombinant Cytochrome P450s (CYPs). Structure elucidation was inferred from mass spectra. Enzyme kinetic studies to determine the Michaelis-Menten kinetics, Km and Vmax, of the formation of the main metabolites and analysis of clinical samples were determined by LC-MS/MS.ResultsCYP reaction phenotyping studies with HLM and r-CYPs indicate major involvement of CYP1A2, 2 C19, 2D6 and 3A4/5 in the metabolism of R- and S-PZQ. Biotransformation studies showed that PZQ is metabolised to cis-4-OH-PZQ mainly by CYP1A2 and CYP2C19. CYP3A4/5 metabolises PZQ to a mono-hydroxyl metabolite (X-OH-PZQ) whilst CYP2D6 metabolises PZQ to minor novel mono-hydroxyl metabolite (Y-OH-PZQ) both pending structural elucidation by nuclear magnetic resonance. R-PZQ was more rapidly cleared than S–PZQ with variable interindividual AUC and Cmax.Discussion and conclusionThe differential role of CYP1A2 and CYP2C19 and of CYP3A4 and CYP3A5 in the formation the 4-OH-PZQ and the novel X-OH-PZQ respectively are intriguing findings as this has not been reported before in humans. In vitro, cis and not trans 4-OH-PZQ formation has been observed contrary in vivo reports in humans which indicate trans 4-OH-PZQ as the main metabolite. The data will enable us to understand the rapid clearance of PZQ and predict potential drug-drug-gene interactions which mayexplain the inter-individual variability of PZQ pharmacokinetics

    Facile solution growth of vertically aligned ZnO nanorods sensitized with aqueous CdS and CdSe quantum dots for photovoltaic applications

    Get PDF
    Vertically aligned single crystalline ZnO nanorod arrays, approximately 3 μm in length and 50-450 nm in diameter are grown by a simple solution approach on a Zn foil substrate. CdS and CdSe colloidal quantum dots are assembled onto ZnO nanorods array using water-soluble nanocrystals capped as-synthesized with a short-chain bifuncional linker thioglycolic acid. The solar cells co-sensitized with both CdS and CdSe quantum dots demonstrate superior efficiency compared with the cells using only one type of quantum dots. A thin Al2O3 layer deposited prior to quantum dot anchoring successfully acts as a barrier inhibiting electron recombination at the Zn/ZnO/electrolyte interface, resulting in power conversion efficiency of approximately 1% with an improved fill factor of 0.55. The in situ growth of ZnO nanorod arrays in a solution containing CdSe quantum dots provides better contact between two materials resulting in enhanced open circuit voltage

    Whole-Genome Sequencing of Retinoblastoma Reveals the Diversity of Rearrangements Disrupting RB1 and Uncovers a Treatment-Related Mutational Signature.

    Get PDF
    The development of retinoblastoma is thought to require pathological genetic changes in both alleles of the RB1 gene. However, cases exist where RB1 mutations are undetectable, suggesting alternative pathways to malignancy. We used whole-genome sequencing (WGS) and transcriptomics to investigate the landscape of sporadic retinoblastomas derived from twenty patients, sought RB1 and other driver mutations and investigated mutational signatures. At least one RB1 mutation was identified in all retinoblastomas, including new mutations in addition to those previously identified by clinical screening. Ten tumours carried structural rearrangements involving RB1 ranging from relatively simple to extremely complex rearrangement patterns, including a chromothripsis-like pattern in one tumour. Bilateral tumours obtained from one patient harboured conserved germline but divergent somatic RB1 mutations, indicating independent evolution. Mutational signature analysis showed predominance of signatures associated with cell division, an absence of ultraviolet-related DNA damage and a profound platinum-related mutational signature in a chemotherapy-exposed tumour. Most RB1 mutations are identifiable by clinical screening. However, the increased resolution and ability to detect otherwise elusive rearrangements by WGS have important repercussions on clinical management and advice on recurrence risks

    A systematic CRISPR screen defines mutational mechanisms underpinning signatures caused by replication errors and endogenous DNA damage.

    Get PDF
    Mutational signatures are imprints of pathophysiological processes arising through tumorigenesis. We generated isogenic CRISPR-Cas9 knockouts (Δ) of 43 genes in human induced pluripotent stem cells, cultured them in the absence of added DNA damage, and performed whole-genome sequencing of 173 subclones. ΔOGG1, ΔUNG, ΔEXO1, ΔRNF168, ΔMLH1, ΔMSH2, ΔMSH6, ΔPMS1, and ΔPMS2 produced marked mutational signatures indicative of being critical mitigators of endogenous DNA modifications. Detailed analyses revealed mutational mechanistic insights, including how 8-oxo-dG elimination is sequence-context-specific while uracil clearance is sequence-context-independent. Mismatch repair (MMR) deficiency signatures are engendered by oxidative damage (C>A transversions), differential misincorporation by replicative polymerases (T>C and C>T transitions), and we propose a 'reverse template slippage' model for T>A transversions. ΔMLH1, ΔMSH6, and ΔMSH2 signatures were similar to each other but distinct from ΔPMS2. Finally, we developed a classifier, MMRDetect, where application to 7,695 WGS cancers showed enhanced detection of MMR-deficient tumors, with implications for responsiveness to immunotherapies

    WSX1 Expression in Tumors Induces Immune Tolerance via Suppression of Effector Immune Cells

    Get PDF
    Crosstalk between tumor cells and the cognate microenvironment plays a crucial role in tumor initiation and progression. However, only a few genes are known to affect such a crosstalk. This study reveals that WSX1 plays such a role when highly expressed in tumor cells. The expression of WSX1 in Lewis Lung Carcinoma (LLC) and the melanoma cell line AGS induces the death of T cells and inhibits the production of the effector cytokine IFNγ from NK and T cells, resulting in the promotion of tumor growth. These pro-tumorigenic properties of WSX1 are independent of IL27. This key observation reveals a new pathway of tumor-host interaction, which will ultimately lead to better strategies in immune therapy to reverse tumor tolerance

    Babesia duncani multi-omics identifies virulence factors and drug targets

    Get PDF
    Babesiosis is a malaria-like disease in humans and animals that is caused by Babesia species, which are tick-transmitted apicomplexan pathogens. Babesia duncani causes severe to lethal infection in humans, but despite the risk that this parasite poses as an emerging pathogen, little is known about its biology, metabolic requirements or pathogenesis. Unlike other apicomplexan parasites that infect red blood cells, B. duncani can be continuously cultured in vitro in human erythrocytes and can infect mice resulting in fulminant babesiosis and death. We report comprehensive, detailed molecular, genomic, transcriptomic and epigenetic analyses to gain insights into the biology of B. duncani. We completed the assembly, 3D structure and annotation of its nuclear genome, and analysed its transcriptomic and epigenetics profiles during its asexual life cycle stages in human erythrocytes. We used RNA-seq data to produce an atlas of parasite metabolism during its intraerythrocytic life cycle. Characterization of the B. duncani genome, epigenome and transcriptome identified classes of candidate virulence factors, antigens for diagnosis of active infection and several attractive drug targets. Furthermore, metabolic reconstitutions from genome annotation and in vitro efficacy studies identified antifolates, pyrimethamine and WR-99210 as potent inhibitors of B. duncani to establish a pipeline of small molecules that could be developed as effective therapies for the treatment of human babesiosis.We thank R. Gao for her contribution to the initial eforts to sequence the B. duncani genome. C.B.M.’s research was supported by grants from the National Institutes of Health (AI097218, GM110506, AI123321 and R43AI136118), the Steven and Alexandra Cohen Foundation (Lyme 62 2020), and the Global Lyme Alliance. S.L.’s research was supported by grants by the US National Science Foundation (IIS 1814359) and the National Institutes of Health (1R01AI169543-01). K.G.L.R.’s research was supported by the National Institutes of Allergy and Infectious Diseases (R01 AI136511, R01 AI142743-01 and R21 AI142506-01), the University of California, Riverside (NIFA-Hatch-225935) and the Health Institute Carlos III (PI20CIII/00037).S

    Aristolochic Acid I Induced Autophagy Extenuates Cell Apoptosis via ERK 1/2 Pathway in Renal Tubular Epithelial Cells

    Get PDF
    Autophagy is a lysosomal degradation pathway that is essential for cell survival and tissue homeostasis. However, limited information is available about autophagy in aristolochic acid (AA) nephropathy. In this study, we investigated the role of autophagy and related signaling pathway during progression of AAI-induced injury to renal tubular epithelial cells (NRK52E cells). The results showed that autophagy in NRK52E cells was detected as early as 3–6 hrs after low dose of AAI (10 µM) exposure as indicated by an up-regulated expression of LC3-II and Beclin 1 proteins. The appearance of AAI-induced punctated staining of autophagosome-associated LC3-II upon GFP-LC3 transfection in NRK52E cells provided further evidence for autophagy. However, cell apoptosis was not detected until 12 hrs after AAI treatment. Blockade of autophagy with Wortmannin or 3-Methyladenine (two inhibitors of phosphoinositede 3-kinases) or small-interfering RNA knockdown of Beclin 1 or Atg7 sensitized the tubular cells to apoptosis. Treatment of NRK52E cells with AAI caused a time-dependent increase in extracellular signal-regulated kinase 1 and 2 (ERK1/2) activity, but not c-Jun N-terminal kinase (JNK) and p38. Pharmacological inhibition of ERK1/2 phosphorylation with U0126 resulted in a decreased AAI-induced autophagy that was accompanied by an increased apoptosis. Taken together, our study demonstrated for the first time that autophagy occurred earlier than apoptosis during AAI-induced tubular epithelial cell injury. Autophagy induced by AAI via ERK1/2 pathway might attenuate apoptosis, which may provide a protective mechanism for cell survival under AAI-induced pathological condition

    A Crosstalk between the Smad and JNK Signaling in the TGF-β-Induced Epithelial-Mesenchymal Transition in Rat Peritoneal Mesothelial Cells

    Get PDF
    Transforming growth factor β (TGF-β) induces the process of epithelial-mesenchymal transition (EMT) through the Smad and JNK signaling. However, it is unclear how these pathways interact in the TGF-β1-induced EMT in rat peritoneal mesothelial cells (RPMCs). Here, we show that inhibition of JNK activation by introducing the dominant-negative JNK1 gene attenuates the TGF-β1-down-regulated E-cadherin expression, and TGF-β1-up-regulated α-SMA, Collagen I, and PAI-1 expression, leading to the inhibition of EMT in primarily cultured RPMCs. Furthermore, TGF-β1 induces a bimodal JNK activation with peaks at 10 minutes and 12 hours post treatment in RPMCs. In addition, the inhibition of Smad3 activation by introducing a Smad3 mutant mitigates the TGF-β1-induced second wave, but not the first wave, of JNK1 activation in RPMCs. Moreover, the inhibition of JNK1 activation prevents the TGF-β1-induced Smad3 activation and nuclear translocation, and inhibition of the TGF-β1-induced second wave of JNK activation greatly reduced TGF-β1-induced EMT in RPMCs. These data indicate a crosstalk between the JNK1 and Samd3 pathways during the TGF-β1-induced EMT and fibrotic process in RPMCs. Therefore, our findings may provide new insights into understanding the regulation of the TGF-β1-related JNK and Smad signaling in the development of fibrosis
    corecore