869 research outputs found

    Transient Zitterbewegung of charge carriers in graphene and carbon nanotubes

    Full text link
    Observable effects due to trembling motion (Zitterbewegung, ZB) of charge carriers in bilayer graphene, monolayer graphene and carbon nanotubes are calculated. It is shown that, when the charge carriers are prepared in the form of gaussian wave packets, the ZB has a transient character with the decay time of femtoseconds in graphene and picoseconds in nanotubes. Analytical results for bilayer graphene allow us to investigate phenomena which accompany the trembling motion. In particular, it is shown that the transient character of ZB in graphene is due to the fact that wave subpackets related to positive and negative electron energies move in opposite directions, so their overlap diminishes with time. This behavior is analogous to that of the wave packets representing relativistic electrons in a vacuum.Comment: 7 pages, 3 figures, augmented versio

    Non-locality of Foldy-Wouthuysen and related transformations for the Dirac equation

    Full text link
    Non-localities of Foldy-Wouthuysen and related transformations, which are used to separate positive and negative energy states in the Dirac equation, are investigated. Second moments of functional kernels generated by the transformations are calculated, the transformed functions and their variances are computed. It is shown that all the transformed quantities are smeared in the coordinate space by the amount comparable to the Compton wavelength λc=/mc\lambda_c=\hbar/mc.Comment: 7 pages, two figure

    Zitterbewegung of Klein-Gordon particles and its simulation by classical systems

    Full text link
    The Klein-Gordon equation is used to calculate the Zitterbewegung (ZB, trembling motion) of spin-zero particles in absence of fields and in the presence of an external magnetic field. Both Hamiltonian and wave formalisms are employed to describe ZB and their results are compared. It is demonstrated that, if one uses wave packets to represent particles, the ZB motion has a decaying behavior. It is also shown that the trembling motion is caused by an interference of two sub-packets composed of positive and negative energy states which propagate with different velocities. In the presence of a magnetic field the quantization of energy spectrum results in many interband frequencies contributing to ZB oscillations and the motion follows a collapse-revival pattern. In the limit of non-relativistic velocities the interband ZB components vanish and the motion is reduced to cyclotron oscillations. The exact dynamics of a charged Klein-Gordon particle in the presence of a magnetic field is described on an operator level. The trembling motion of a KG particle in absence of fields is simulated using a classical model proposed by Morse and Feshbach -- it is shown that a variance of a Gaussian wave packet exhibits ZB oscillations.Comment: 16 pages and 7 figure

    Epicyclic orbital oscillations in Newton's and Einstein's dynamics

    Full text link
    We apply Feynman's principle, ``The same equations have the same solutions'', to Kepler's problem and show that Newton's dynamics in a properly curved 3-D space is identical with that described by Einstein's theory in the 3-D optical geometry of Schwarzschild's spacetime. For this reason, rather unexpectedly, Newton's formulae for Kepler's problem, in the case of nearly circular motion in a static, spherically spherical gravitational potential accurately describe strong field general relativistic effects, in particular vanishing of the radial epicyclic frequency at the marginally stable orbit.Comment: 8 page

    Adolescence and the next generation

    Get PDF
    Adolescent growth and social development shape the early development of offspring from preconception through to the post-partum period through distinct processes in males and females. At a time of great change in the forces shaping adolescence, including the timing of parenthood, investments in today\u27s adolescents, the largest cohort in human history, will yield great dividends for future generations

    Non-locality of energy separating transformations for Dirac electrons in a magnetic field

    Full text link
    We investigate a non-locality of Moss-Okninski transformation (MOT) used to separate positive and negative energy states in the 3+1 Dirac equation for relativistic electrons in the presence of a magnetic field. Properties of functional kernels generated by the MOT are analyzed and kernel non-localities are characterized by calculating their second moments parallel and perpendicular to the magnetic field. Transformed functions are described and investigated by computing their variances. It is shown that the non-locality of the energy-separating transformation in the direction parallel to the magnetic field is characterized by the Compton wavelength λc=/mc\lambda_c=\hbar/mc. In the plane transverse to magnetic field the non-locality depends both on magnetic radius L=(/eB)1/2L=(\hbar/eB)^{1/2} and λc\lambda_c. The non-locality of MO transformation for the 2+1 Dirac equation is also considered.Comment: 11 pages 3 figure

    Block bond-order potential as a convergent moments-based method

    Get PDF
    The theory of a novel bond-order potential, which is based on the block Lanczos algorithm, is presented within an orthogonal tight-binding representation. The block scheme handles automatically the very different character of sigma and pi bonds by introducing block elements, which produces rapid convergence of the energies and forces within insulators, semiconductors, metals, and molecules. The method gives the first convergent results for vacancies in semiconductors using a moments-based method with a low number of moments. Our use of the Lanczos basis simplifies the calculations of the band energy and forces, which allows the application of the method to the molecular dynamics simulations of large systems. As an illustration of this convergent O(N) method we apply the block bond-order potential to the large scale simulation of the deformation of a carbon nanotube.Comment: revtex, 43 pages, 11 figures, submitted to Phys. Rev.

    Atomic Scale Structure and Chemical Composition across Order-Disorder Interfaces

    Get PDF
    Through a combination of aberration-corrected high-resolution scanning transmission electron microscopy and three-dimensional atom probe tomography, the true atomic-scale structure and change in chemical composition across the complex order-disorder interface in a metallic alloy has been determined. The study reveals the presence of two interfacial widths, one corresponding to an order-disorder transition, and the other to the compositional transition across the interface, raising fundamental questions regarding the definition of the interfacial width in such systems
    corecore