2,206 research outputs found

    A Complementary Resistive Switch-based Crossbar Array Adder

    Full text link
    Redox-based resistive switching devices (ReRAM) are an emerging class of non-volatile storage elements suited for nanoscale memory applications. In terms of logic operations, ReRAM devices were suggested to be used as programmable interconnects, large-scale look-up tables or for sequential logic operations. However, without additional selector devices these approaches are not suited for use in large scale nanocrossbar memory arrays, which is the preferred architecture for ReRAM devices due to the minimum area consumption. To overcome this issue for the sequential logic approach, we recently introduced a novel concept, which is suited for passive crossbar arrays using complementary resistive switches (CRSs). CRS cells offer two high resistive storage states, and thus, parasitic sneak currents are efficiently avoided. However, until now the CRS-based logic-in-memory approach was only shown to be able to perform basic Boolean logic operations using a single CRS cell. In this paper, we introduce two multi-bit adder schemes using the CRS-based logic-in-memory approach. We proof the concepts by means of SPICE simulations using a dynamical memristive device model of a ReRAM cell. Finally, we show the advantages of our novel adder concept in terms of step count and number of devices in comparison to a recently published adder approach, which applies the conventional ReRAM-based sequential logic concept introduced by Borghetti et al.Comment: 12 pages, accepted for IEEE Journal on Emerging and Selected Topics in Circuits and Systems (JETCAS), issue on Computing in Emerging Technologie

    Insulator-to-metal transition of SrTiO3:Nb single crystal surfaces induced by Ar+ bombardment

    Get PDF
    In this paper, the effect of Ar+ bombardment of SrTiO3:Nb surface layers is investigated on the macro- and nanoscale using surface-sensitive methods. After bombardment, the stoichiometry and electronic structure are changed distinctly leading to an insulator-to-metal transition related to the change of the Ti "d" electron from d0 to d1 and d2. During bombardment, conducting islands are formed on the surface. The induced metallic state is not stable and can be reversed due to a redox process by external oxidation and even by self-reoxidation upon heating the sample to temperatures of 300{\deg}C.Comment: 4 pages, 4 figure

    Electrical current distribution across a metal-insulator-metal structure during bistable switching

    Full text link
    Combining scanning electron microscopy (SEM) and electron-beam-induced current (EBIC) imaging with transport measurements, it is shown that the current flowing across a two-terminal oxide-based capacitor-like structure is preferentially confined in areas localized at defects. As the thin-film device switches between two different resistance states, the distribution and intensity of the current paths, appearing as bright spots, change. This implies that switching and memory effects are mainly determined by the conducting properties along such paths. A model based on the storage and release of charge carriers within the insulator seems adequate to explain the observed memory effect.Comment: 8 pages, 7 figures, submitted to J. Appl. Phy

    Staff development as a factor of competitiveness increase oil and gas industry

    Get PDF
    Currently, personnel policy in the Russian Federation oil and gas sector needs to be modernized. Previous management systems outdated in most cases. The necessity of raising funds in such areas as human resources management: training, motivation and retraining, as well as interaction with schools and universities. The proposed rationalization measures should serve as a stimulus for the development of staff, as well as lead to significant changes in the formation of the branch system, improving performance and growth of highly qualified personnel in the oil and gas industry. After completing these steps, Russian oil companies can increase their competitive advantage in the global market and increase the attractiveness of the oil and gas industry

    Liquid-injection atomic layer deposition of TiOx and Pb-Ti-O films

    Get PDF
    Pb-Ti-O films were prepared by liquid-injection atomic layer deposition (ALD) using H2O as oxygen source after evaluating Ti precursors with different beta-diketonate type ligands, Ti(OC3H7)(2)(C11H19O2)(2) [Ti(Oi-Pr)(2)(DPM)(2)] and Ti(OC5H11)(2)(C10H17O2)(2) [Ti(Ot-Am)(2)(IBPM)(2)], dissolved in ethylcyclohexane. For both Ti precursors, the apparent thermal activation energy of the deposition rate of TiOx films increased at a deposition temperature of about 380 degrees C, and the deposition rate of TiOx films grown at 300 degrees C saturated against the volume of injected Ti precursors. Ti(Oi-Pr)(2)(DPM)(2) was selected for the subsequent Pb-Ti-O film deposition because of its high precursor efficiency and the low temperature dependence of the deposition rate. Pb-Ti-O films were prepared using Ti(Oi-Pr)(2)(DPM)(2) and Pb(C12H21O2)(2) [Pb(TMOD)(2)] at deposition temperatures of 240 and 300 degrees C. The deposition rates of Pb and Ti in the Pb-Ti-O process were higher than those in binary PbO and TiOx processes under the same deposition conditions. The deposition rate of Pb in the Pb-Ti-O process showed a linear increase in response to the injected Pb precursor volume, which was different from the saturated deposition rate of the PbO process. The interface chemistry between the precursors and predeposited cation layers has critical impact on the self-regulated growth mechanism in the multicomponent oxide ALD. (c) 2006 The Electrochemical Society

    Hafnium carbide formation in oxygen deficient hafnium oxide thin films

    Full text link
    On highly oxygen deficient thin films of hafnium oxide (hafnia, HfO2x_{2-x}) contaminated with adsorbates of carbon oxides, the formation of hafnium carbide (HfCx_x) at the surface during vacuum annealing at temperatures as low as 600 {\deg}C is reported. Using X-ray photoelectron spectroscopy the evolution of the HfCx_x surface layer related to a transformation from insulating into metallic state is monitored in situ. In contrast, for fully stoichiometric HfO2_2 thin films prepared and measured under identical conditions, the formation of HfCx_x was not detectable suggesting that the enhanced adsorption of carbon oxides on oxygen deficient films provides a carbon source for the carbide formation. This shows that a high concentration of oxygen vacancies in carbon contaminated hafnia lowers considerably the formation energy of hafnium carbide. Thus, the presence of a sufficient amount of residual carbon in resistive random access memory devices might lead to a similar carbide formation within the conducting filaments due to Joule heating

    Applicability of Well-Established Memristive Models for Simulations of Resistive Switching Devices

    Full text link
    Highly accurate and predictive models of resistive switching devices are needed to enable future memory and logic design. Widely used is the memristive modeling approach considering resistive switches as dynamical systems. Here we introduce three evaluation criteria for memristor models, checking for plausibility of the I-V characteristics, the presence of a sufficiently non-linearity of the switching kinetics, and the feasibility of predicting the behavior of two anti-serially connected devices correctly. We analyzed two classes of models: the first class comprises common linear memristor models and the second class widely used non-linear memristive models. The linear memristor models are based on Strukovs initial memristor model extended by different window functions, while the non-linear models include Picketts physics-based memristor model and models derived thereof. This study reveals lacking predictivity of the first class of models, independent of the applied window function. Only the physics-based model is able to fulfill most of the basic evaluation criteria.Comment: 9 pages; accepted for IEEE TCAS-
    corecore