6,389 research outputs found
Online Gaming Can Make a Better World: Jane McGonigal
With personal feelings put aside and sociological theoretical depictions brought to the forefront, it is interesting to compare some of Jane\u27s ideas with that of both Emile Durkheim and Max Weber. The theorist who stood out right away, being exemplified through Jane\u27s positive attitude claims on a much larger, macro-level scale, was Emile Durkheim. Jane\u27s ideas about transcending human\u27s as a resource through the social fabrics of gaming into something that might solve world hunger, poverty, and global warming was nothing short of functionalism at it\u27s best. Jane\u27s platform for social structure and maintaining positive social order is the online world, and online gaming is the vehicle for change
The geometric role of symmetry breaking in gravity
In gravity, breaking symmetry from a group G to a group H plays the role of
describing geometry in relation to the geometry the homogeneous space G/H. The
deep reason for this is Cartan's "method of equivalence," giving, in
particular, an exact correspondence between metrics and Cartan connections. I
argue that broken symmetry is thus implicit in any gravity theory, for purely
geometric reasons. As an application, I explain how this kind of thinking gives
a new approach to Hamiltonian gravity in which an observer field spontaneously
breaks Lorentz symmetry and gives a Cartan connection on space.Comment: 4 pages. Contribution written for proceedings of the conference
"Loops 11" (Madrid, May 2011
The Insignificance of Global Reheating in the Abell 1068 Cluster: X-Ray Analysis
We report on a Chandra observation of the massive, medium redshift (z=0.1386)
cooling flow cluster Abell 1068. We detect a clear temperature gradient in the
X-ray emitting gas from kT ~ 5 keV in the outer part of the cluster down to
roughly 2 keV in the core, and a striking increase in the metallicity of the
gas toward the cluster center. The total spectrum from the cluster can be fit
by a cooling flow model with a total mass deposition rate of 150 solar
masses/yr. Within the core (r < 30 kpc), the mass depositon rate of 40 solar
masses/yr is comparable to estimates for the star formation rate from optical
data. We find an apparent correlation between the cD galaxy's optical isophotes
and enhanced metallicity isocontours in the central ~100 kpc of the cluster. We
show that the approximate doubling of the metallicity associated with the cD
can be plausibly explained by supernova explosions associated with the cD's
ambient stellar population and the recent starburst. Finally, we calculate the
amount of heating due to thermal conduction and show that this process is
unlikely to offset cooling in Abell 1068.Comment: Accepted for publication in ApJ, 26 pages, 12 b+w figures, 3 color
figure
Determination and development of cost effective techniques to monitor recreational catch and effort in Western Australian demersal finfish fisheries: Final Report for FRDC Project 2005/034 and WAMSI Subproject 4.4.3
Objectives1.Complete a series of concurrent catch and effort surveys of the West Coast Demersal Recreational Fishery using a variety of survey techniques.2.Compare the precision and accuracy of estimates generated using these various techniques3.Usingcostbenefitanalysis,produceaseriesofoptionstomonitorannualcatchandeffortfora range of precision levels and indicator species4.Development of cost effective methods for monitoring the catch of the non-commercial sector
Criteria for the experimental observation of multi-dimensional optical solitons in saturable media
Criteria for experimental observation of multi-dimensional optical solitons
in media with saturable refractive nonlinearities are developed. The criteria
are applied to actual material parameters (characterizing the cubic
self-focusing and quintic self-defocusing nonlinearities, two-photon loss, and
optical-damage threshold) for various glasses. This way, we identify operation
windows for soliton formation in these glasses. It is found that two-photon
absorption sets stringent limits on the windows. We conclude that, while a
well-defined window of parameters exists for two-dimensional solitons (spatial
or spatiotemporal), for their three-dimensional spatiotemporal counterparts
such a window \emph{does not} exist, due to the nonlinear loss in glasses.Comment: 8 pages, to appear in Phys. Rev.
A new chiral electro-optic effect: Sum-frequency generation from optically active liquids in the presence of a dc electric field
We report the observation of sum-frequency signals that depend linearly on an
applied electrostatic field and that change sign with the handedness of an
optically active solution. This recently predicted chiral electro-optic effect
exists in the electric-dipole approximation. The static electric field gives
rise to an electric-field-induced sum-frequency signal (an achiral third-order
process) that interferes with the chirality-specific sum-frequency at
second-order. The cross-terms linear in the electrostatic field constitute the
effect and may be used to determine the absolute sign of second- and
third-order nonlinear optical susceptibilities in isotropic media.Comment: Submitted to Physical Revie
Resolving the Formation of Protogalaxies. III. Feedback from the First Stars
The first stars form in dark matter halos of masses ~10^6 M_sun as suggested
by an increasing number of numerical simulations. Radiation feedback from these
stars expels most of the gas from their shallow potential well of their
surrounding dark matter halos. We use cosmological adaptive mesh refinement
simulations that include self-consistent Population III star formation and
feedback to examine the properties of assembling early dwarf galaxies. Accurate
radiative transport is modeled with adaptive ray tracing. We include supernova
explosions and follow the metal enrichment of the intergalactic medium. The
calculations focus on the formation of several dwarf galaxies and their
progenitors. In these halos, baryon fractions in 10^8 solar mass halos decrease
by a factor of 2 with stellar feedback and by a factor of 3 with supernova
explosions. We find that radiation feedback and supernova explosions increase
gaseous spin parameters up to a factor of 4 and vary with time. Stellar
feedback, supernova explosions, and H_2 cooling create a complex, multi-phase
interstellar medium whose densities and temperatures can span up to 6 orders of
magnitude at a given radius. The pair-instability supernovae of Population III
stars alone enrich the halos with virial temperatures of 10^4 K to
approximately 10^{-3} of solar metallicity. We find that 40% of the heavy
elements resides in the intergalactic medium (IGM) at the end of our
calculations. The highest metallicity gas exists in supernova remnants and very
dilute regions of the IGM.Comment: 15 pages, 16 figures, accepted to ApJ. Many changes, including
estimates of metal line cooling. High resolution images and movies available
at http://www.slac.stanford.edu/~jwise/research/PGalaxies3
Quantum dot formation on a strain-patterned epitaxial thin film
We model the effect of substrate strain patterning on the self-assembly of quantum dots (QDs). When the surface energy is isotropic, we demonstrate that strain patterning via embedded substrate inclusions may result in ordered, self-organized QD arrays. However, for systems with strong cubic surface energy anisotropy, the same patterning does not readily lead to an ordered array of pyramids at long times. We conclude that the form of the surface energy anisotropy strongly influences the manner in which QDs self-assemble into regular arrays.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87827/2/133102_1.pd
MacDowell-Mansouri gravity and Cartan geometry
The geometric content of the MacDowell-Mansouri formulation of general
relativity is best understood in terms of Cartan geometry. In particular,
Cartan geometry gives clear geometric meaning to the MacDowell-Mansouri trick
of combining the Levi-Civita connection and coframe field, or soldering form,
into a single physical field. The Cartan perspective allows us to view physical
spacetime as tangentially approximated by an arbitrary homogeneous "model
spacetime", including not only the flat Minkowski model, as is implicitly used
in standard general relativity, but also de Sitter, anti de Sitter, or other
models. A "Cartan connection" gives a prescription for parallel transport from
one "tangent model spacetime" to another, along any path, giving a natural
interpretation of the MacDowell-Mansouri connection as "rolling" the model
spacetime along physical spacetime. I explain Cartan geometry, and "Cartan
gauge theory", in which the gauge field is replaced by a Cartan connection. In
particular, I discuss MacDowell-Mansouri gravity, as well as its more recent
reformulation in terms of BF theory, in the context of Cartan geometry.Comment: 34 pages, 5 figures. v2: many clarifications, typos correcte
- …