The geometric content of the MacDowell-Mansouri formulation of general
relativity is best understood in terms of Cartan geometry. In particular,
Cartan geometry gives clear geometric meaning to the MacDowell-Mansouri trick
of combining the Levi-Civita connection and coframe field, or soldering form,
into a single physical field. The Cartan perspective allows us to view physical
spacetime as tangentially approximated by an arbitrary homogeneous "model
spacetime", including not only the flat Minkowski model, as is implicitly used
in standard general relativity, but also de Sitter, anti de Sitter, or other
models. A "Cartan connection" gives a prescription for parallel transport from
one "tangent model spacetime" to another, along any path, giving a natural
interpretation of the MacDowell-Mansouri connection as "rolling" the model
spacetime along physical spacetime. I explain Cartan geometry, and "Cartan
gauge theory", in which the gauge field is replaced by a Cartan connection. In
particular, I discuss MacDowell-Mansouri gravity, as well as its more recent
reformulation in terms of BF theory, in the context of Cartan geometry.Comment: 34 pages, 5 figures. v2: many clarifications, typos correcte