874 research outputs found

    Extracting inter-dot tunnel couplings between few donor quantum dots in silicon

    Get PDF
    The long term scaling prospects for solid-state quantum computing architectures relies heavily on the ability to simply and reliably measure and control the coherent electron interaction strength, known as the tunnel coupling, tc. Here, we describe a method to extract the tc between two quantum dots (QDs) utilising their different tunnel rates to a reservoir. We demonstrate the technique on a few donor triple QD tunnel coupled to a nearby single-electron transistor(SET)in silicon. The device was patterned using scanning tunneling microscopy-hydrogen lithography allowing for a direct measurement of the tunnel coupling for a given inter-dot distance. We extract tc = Β± 5.5 1.8 GHz and tc = Β± 2.2 1.3 GHz between each of the nearest-neighbour QDs which are separated by 14.5 nm and 14.0 nm, respectively. The technique allows for an accurate measurement of tc for nanoscale devices even when it is smaller than the electron temperature and is an ideal characterisation tool for multi-dot systems with a charge senso

    High-fidelity single-shot singlet-triplet readout of precision-placed donors in silicon

    Get PDF
    In this work we perform direct single-shot readout of the singlet-triplet states in exchange coupled electrons confined to precision-placed donor atoms in silicon. Our method takes advantage of the large energy splitting given by the Pauli-spin blockaded (2,0) triplet states, from which we can achieve a single-shot readout fidelity of 98.4 Β± 0.2%. We measure the triplet-minus relaxation time to be of the order 3 s at 2.5 T and observe its predicted decrease as a function of magnetic field, reaching 0.5 s at 1 T

    Neural Circuitry of Novelty Salience Processing in Psychosis Risk: Association With Clinical Outcome

    Get PDF
    Psychosis has been proposed to develop from dysfunction in a hippocampal-striatal-midbrain circuit, leading to aberrant salience processing. Here, we used functional magnetic resonance imaging (fMRI) during novelty salience processing to investigate this model in people at clinical high risk (CHR) for psychosis according to their subsequent clinical outcomes. Seventy-six CHR participants as defined using the Comprehensive Assessment of At-Risk Mental States (CAARMS) and 31 healthy controls (HC) were studied while performing a novelty salience fMRI task that engaged an a priori hippocampal-striatal-midbrain circuit of interest. The CHR sample was then followed clinically for a mean of 59.7 months (~5 y), when clinical outcomes were assessed in terms of transition (CHR-T) or non-transition (CHR-NT) to psychosis (CAARMS criteria): during this period, 13 individuals (17%) developed a psychotic disorder (CHR-T) and 63 did not. Functional activation and effective connectivity within a hippocampal-striatal-midbrain circuit were compared between groups. In CHR individuals compared to HC, hippocampal response to novel stimuli was significantly attenuated (P = .041 family-wise error corrected). Dynamic Causal Modelling revealed that stimulus novelty modulated effective connectivity from the hippocampus to the striatum, and from the midbrain to the hippocampus, significantly more in CHR participants than in HC. Conversely, stimulus novelty modulated connectivity from the midbrain to the striatum significantly less in CHR participants than in HC, and less in CHR participants who subsequently developed psychosis than in CHR individuals who did not become psychotic. Our findings are consistent with preclinical evidence implicating hippocampal-striatal-midbrain circuit dysfunction in altered salience processing and the onset of psychosis

    MitoQ supplementation augments acute exercise-induced increases in muscle PGC1Ξ± mRNA and improves training-induced increases in peak power independent of mitochondrial content and function in untrained middle-aged men

    Get PDF
    The role of mitochondrial ROS in signalling muscle adaptations to exercise training has not been explored in detail. We investigated the effect of supplementation with the mitochondria-targeted antioxidant MitoQ on a) the skeletal muscle mitochondrial and antioxidant gene transcriptional response to acute high-intensity exercise and b) skeletal muscle mitochondrial content and function following exercise training. In a randomised, double-blind, placebo-controlled, parallel design study, 23 untrained men (age: 44 Β± 7 years, VO2peak: 39.6 Β± 7.9 ml/kg/min) were randomised to receive either MitoQ (20 mg/d) or a placebo for 10 days before completing a bout of high-intensity interval exercise (cycle ergometer, 10 Γ— 60 s at VO2peak workload with 75 s rest). Blood samples and vastus lateralis muscle biopsies were collected before exercise and immediately and 3 h after exercise. Participants then completed high-intensity interval training (HIIT; 3 sessions per week for 3 weeks) and another blood sample and muscle biopsy were collected. There was no effect of acute exercise or MitoQ on systemic (plasma protein carbonyls and reduced glutathione) or skeletal muscle (mtDNA damage and 4-HNE) oxidative stress biomarkers. Acute exercise-induced increases in skeletal muscle peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1-Ξ±) mRNA expression were augmented in the MitoQ group. Despite this, training-induced increases in skeletal muscle mitochondrial content were similar between groups. HIIT-induced increases in VO2peak and 20 km time trial performance were also similar between groups while training-induced increases in peak power achieved during the VO2peak test were augmented in the MitoQ group. These data suggest that training-induced increases in peak power are enhanced following MitoQ supplementation, which may be related to the augmentation of skeletal muscle PGC1Ξ± expression following acute exercise. However, these effects do not appear to be related to an effect of MitoQ supplementation on exercise-induced oxidative stress or training-induced mitochondrial biogenesis in skeletal muscle

    Priority for the Worse Off and the Social Cost of Carbon

    Get PDF
    The social cost of carbon (SCC) is a monetary measure of the harms from carbon emission. Specifically, it is the reduction in current consumption that produces a loss in social welfare equivalent to that caused by the emission of a ton of CO2. The standard approach is to calculate the SCC using a discounted-utilitarian social welfare function (SWF)β€”one that simply adds up the well-being numbers (utilities) of individuals, as discounted by a weighting factor that decreases with time. The discounted-utilitarian SWF has been criticized both for ignoring the distribution of well-being, and for including an arbitrary preference for earlier generations. Here, we use a prioritarian SWF, with no time-discount factor, to calculate the SCC in the integrated assessment model RICE. Prioritarianism is a well-developed concept in ethics and theoretical welfare economics, but has been, thus far, little used in climate scholarship. The core idea is to give greater weight to well-being changes affecting worse off individuals. We find substantial differences between the discounted-utilitarian and non-discounted prioritarian SCC

    Improving gait classification in horses by using inertial measurement unit (IMU) generated data and machine learning

    Get PDF
    For centuries humans have been fascinated by the natural beauty of horses in motion and their different gaits. Gait classification (GC) is commonly performed through visual assessment and reliable, automated methods for real-time objective GC in horses are warranted. In this study, we used a full body network of wireless, high sampling-rate sensors combined with machine learning to fully automatically classify gait. Using data from 120 horses of four different domestic breeds, equipped with seven motion sensors, we included 7576 strides from eight different gaits. GC was trained using several machine-learning approaches, both from feature-extracted data and from raw sensor data. Our best GC model achieved 97% accuracy. Our technique facilitated accurate, GC that enables in-depth biomechanical studies and allows for highly accurate phenotyping of gait for genetic research and breeding. Our approach lends itself for potential use in other quadrupedal species without the need for developing gait/animal specific algorithms

    Clinical practice: Drug desensitization in children

    Get PDF
    Immediate type allergic reactions to medication are potentially life threatening and can hamper drug therapy of several medical conditions. Exact incidence and prevalence data for these reactions in children are lacking. If no alternative drug treatment is available, a desensitization procedure may secure the continuation of necessary therapy. Desensitization is only appropriate in case of a strong suspicion of an IgE-mediated allergic reaction. It should be performed by trained clinicians (allergy specialists) in a hospital setting where treatment of a potential anaphylactic reaction can be done without any delay. In this article, literature describing desensitization procedures for several antibiotics, antineoplastic agents, and vaccines in children is reviewed. In general, desensitization schemes for children differ only in final dose from schemes for adults. Contradictory data were found regarding the protective effects of premedication with antihistamines and glucocorticoids

    Mapping the chemical potential landscape of a triple quantum dot

    Get PDF
    We investigate the non-equilibrium charge dynamics of a triple quantum dot and demonstrate how electron transport through these systems can give rise to non-trivial tunnelling paths. Using a real-time charge sensing method we establish tunnelling pathways taken by particular electrons under well-defined electrostatic configurations. We show how these measurements map to the chemical potentials for different charge states across the system. We use a modified Hubbard Hamiltonian to describe the system dynamics and show that it reproduces all experimental observations.Comment: 7 pages, 3 figure

    Mood instability, mental illness and suicidal ideas : results from a household survey

    Get PDF
    Purpose: There is weak and inconsistent evidence that mood instability (MI) is associated with depression, post traumatic stress disorder (PTSD) and suicidality although the basis of this is unclear. Our objectives were first to test whether there is an association between depression and PTSD, and MI and secondly whether MI exerts an independent effect on suicidal thinking over and above that explained by common mental disorders. Methods: We used data from the Adult Psychiatric Morbidity Survey 2007 (N = 7,131). Chi-square tests were used to examine associations between depression and PTSD, and MI, followed by regression modelling to examine associations between MI and depression, and with PTSD. Multiple logistic regression analyses were used to assess the independent effect of MI on suicidal thinking, after adjustment for demographic factors and the effects of common mental disorder diagnoses. Results: There are high rates of MI in depression and PTSD and the presence of MI increases the odds of depression by 10.66 [95 % confidence interval (CI) 7.51–15.13] and PTSD by 8.69 (95 % CI 5.90–12.79), respectively, after adjusting for other factors. Mood instability independently explained suicidal thinking, multiplying the odds by nearly five (odds ratio 4.82; 95 % CI 3.39–6.85), and was individually by some way the most important single factor in explaining suicidal thoughts. Conclusions: MI is strongly associated with depression and PTSD. In people with common mental disorders MI is clinically significant as it acts as an additional factor exacerbating the risk of suicidal thinking. It is important to enquire about MI as part of clinical assessment and treatment studies are required

    Primary and malignant cholangiocytes undergo CD40 mediated Fas dependent Apoptosis, but are insensitive to direct activation with exogenous fas ligand

    Get PDF
    Introduction Cholangiocarcinoma is a rare malignancy of the biliary tract, the incidence of which is rising, but the pathogenesis of which remains uncertain. No common genetic defects have been described but it is accepted that chronic inflammation is an important contributing factor. We have shown that primary human cholangiocyte and hepatocyte survival is tightly regulated via co-operative interactions between two tumour necrosis family (TNF) receptor family members; CD40 and Fas (CD95). Functional deficiency of CD154, the ligand for CD40, leads to a failure of clearance of biliary tract infections and a predisposition to cholangiocarcinoma implying a direct link between TNF receptor-mediated apoptosis and the development of cholangiocarcinoma. Aims To determine whether malignant cholangiocytes display defects in CD40 mediated apoptosis. By comparing CD40 and Fas-mediated apoptosis and intracellular signalling in primary human cholangiocytes and three cholangiocyte cell lines. Results Primary cholangiocytes and cholangiocyte cell lines were relatively insensitive to direct Fas-mediated killing with exogenous FasL when compared with Jurkat cells, which readily underwent Fas-mediated apoptosis, but were extremely sensitive to CD154 stimulation. The sensitivity of cells to CD40 activation was similar in magnitude in both primary and malignant cells and was STAT-3 and AP-1 dependent in both. Conclusions 1) Both primary and malignant cholangiocytes are relatively resistant to Fas–mediated killing but show exquisite sensitivity to CD154, suggesting that the CD40 pathway is intact and fully functional in both primary and malignant cholangiocytes 2) The relative insensitivity of cholangiocytes to Fas activation demonstrates the importance of CD40 augmentation of Fas dependent death in these cells. Agonistic therapies which target CD40 and associated intracellular signalling pathways may be effective in promoting apoptosis of malignant cholangiocytes
    • …
    corecore