310 research outputs found

    Radio-science performance analysis software

    Get PDF
    The Radio Science Systems Group (RSSG) provides various support functions for several flight project radio-science teams. Among these support functions are uplink and sequence planning, real-time operations monitoring and support, data validation, archiving and distribution functions, and data processing and analysis. This article describes the support functions that encompass radio-science data performance analysis. The primary tool used by the RSSG to fulfill this support function is the STBLTY program set. STBLTY is used to reconstruct observable frequencies and calculate model frequencies, frequency residuals, frequency stability in terms of Allan deviation, reconstructed phase, frequency and phase power spectral density, and frequency drift rates. In the case of one-way data, using an ultrastable oscillator (USO) as a frequency reference, the program set computes the spacecraft transmitted frequency and maintains a database containing the in-flight history of the USO measurements. The program set also produces graphical displays. Some examples and discussions on operating the program set on Galileo and Ulysses data will be presented

    Radio science ground data system for the Voyager-Neptune encounter, part 1

    Get PDF
    The Voyager radio science experiments at Neptune required the creation of a ground data system array that includes a Deep Space Network complex, the Parkes Radio Observatory, and the Usuda deep space tracking station. The performance requirements were based on experience with the previous Voyager encounters, as well as the scientific goals at Neptune. The requirements were stricter than those of the Uranus encounter because of the need to avoid the phase-stability problems experienced during that encounter and because the spacecraft flyby was faster and closer to the planet than previous encounters. The primary requirement on the instrument was to recover the phase and amplitude of the S- and X-band (2.3 and 8.4 GHz) signals under the dynamic conditions encountered during the occultations. The primary receiver type for the measurements was open loop with high phase-noise and frequency stability performance. The receiver filter bandwidth was predetermined based on the spacecraft's trajectory and frequency uncertainties

    ExoMars Schiaparelli Direct-to-Earth Observation using GMRT

    Get PDF
    During the ExoMars Schiaparelli separation event on 16 October 2016 and Entry, Descent, and Landing (EDL) events 3 days later, the Giant Metrewave Radio Telescope (GMRT) near Pune, India, was used to directly observe UHF transmissions from the Schiaparelli lander as they arrive at Earth. The Doppler shift of the carrier frequency was measured and used as a diagnostic to identify key events during EDL. This signal detection at GMRT was the only real‐time aliveness indicator to European Space Agency mission operations during the critical EDL stage of the mission

    ExoMars Schiaparelli Direct-to-Earth Observation using GMRT

    Get PDF
    During the ExoMars Schiaparelli separation event on 16 October 2016 and Entry, Descent, and Landing (EDL) events 3 days later, the Giant Metrewave Radio Telescope (GMRT) near Pune, India, was used to directly observe UHF transmissions from the Schiaparelli lander as they arrive at Earth. The Doppler shift of the carrier frequency was measured and used as a diagnostic to identify key events during EDL. This signal detection at GMRT was the only real‐time aliveness indicator to European Space Agency mission operations during the critical EDL stage of the mission

    The Sardinia Space Communication Asset: Performance of the Sardinia Deep Space Antenna X-Band Downlink Capability

    Get PDF
    The Sardinia deep space antenna (SDSA), managed by the Italian Space Agency (ASI) has started its operations in 2017 aiming to provide tracking and communication services for deep space, near earth, and lunar missions, and to support new and challenging radio science experiments. The SDSA shares with the Sardinia Radio Telescope (SRT) a part of the system and infrastructure, but has its own specific equipment and a dedicated control center. The current SDSA capabilities involve the X-band (8.4 GHz-8.5 GHz) reception of telemetry from deep space probes within interplanetary missions. In this work we describe the development and performance of the X-band receiving system. It was designed and assembled with the cooperation of both the NASA-Jet Propulsion Laboratory (JPL) and the European Space Agency (ESA). Specifically, NASA-JPL provided the X-band feed and the cryogenic receiver installed in a suitable focus of the SRT devoted to space applications, and ESA provided the intermediate frequency modem system (IFMS) for signal processing. The coupling of the X-band feed with the parabolic reflector of the SRT and the radiating features of the SDSA have been evaluated with simulations performed using CST Studio Suite and GRASP by Ticra. The telecommunication performance of the system has been assessed by measurements and experiments showing a good agreement between estimates and simulations

    Fundamental Physics with the Laser Astrometric Test Of Relativity

    Full text link
    The Laser Astrometric Test Of Relativity (LATOR) is a joint European-U.S. Michelson-Morley-type experiment designed to test the pure tensor metric nature of gravitation - a fundamental postulate of Einstein's theory of general relativity. By using a combination of independent time-series of highly accurate gravitational deflection of light in the immediate proximity to the Sun, along with measurements of the Shapiro time delay on interplanetary scales (to a precision respectively better than 0.1 picoradians and 1 cm), LATOR will significantly improve our knowledge of relativistic gravity. The primary mission objective is to i) measure the key post-Newtonian Eddington parameter \gamma with accuracy of a part in 10^9. (1-\gamma) is a direct measure for presence of a new interaction in gravitational theory, and, in its search, LATOR goes a factor 30,000 beyond the present best result, Cassini's 2003 test. The mission will also provide: ii) first measurement of gravity's non-linear effects on light to ~0.01% accuracy; including both the Eddington \beta parameter and also the spatial metric's 2nd order potential contribution (never measured before); iii) direct measurement of the solar quadrupole moment J2 (currently unavailable) to accuracy of a part in 200 of its expected size; iv) direct measurement of the "frame-dragging" effect on light by the Sun's gravitomagnetic field, to 1% accuracy. LATOR's primary measurement pushes to unprecedented accuracy the search for cosmologically relevant scalar-tensor theories of gravity by looking for a remnant scalar field in today's solar system. We discuss the mission design of this proposed experiment.Comment: 8 pages, 9 figures; invited talk given at the 2005 ESLAB Symposium "Trends in Space Science and Cosmic Vision 2020," 19-21 April 2005, ESTEC, Noodrwijk, The Netherland
    corecore