27 research outputs found

    Drought Impact Is Alleviated in Sugar Beets (Beta vulgaris L.) by Foliar Application of Fullerenol Nanoparticles

    Get PDF
    Over the past few years, significant efforts have been made to decrease the effects of drought stress on plant productivity and quality. We propose that fullerenol nanoparticles (FNPs, molecular formula C-60(OH)(24)) may help alleviate drought stress by serving as an additional intercellular water supply. Specifically, FNPs are able to penetrate plant leaf and root tissues, where they bind water in various cell compartments. This hydroscopic activity suggests that FNPs could be beneficial in plants. The aim of the present study was to analyse the influence of FNPs on sugar beet plants exposed to drought stress. Our results indicate that intracellular water metabolism can be modified by foliar application of FNPs in drought exposed plants. Drought stress induced a significant increase in the compatible osmolyte proline in both the leaves and roots of control plants, but not in FNP treated plants. These results indicate that FNPs could act as intracellular binders of water, creating an additional water reserve, and enabling adaptation to drought stress. Moreover, analysis of plant antioxidant enzyme activities (CAT, APx and GPx), MDA and GSH content indicate that fullerenol foliar application could have some beneficial effect on alleviating oxidative effects of drought stress, depending on the concentration of nanoparticles applied. Although further studies are necessary to elucidate the biochemical impact of FNPs on plants; the present results could directly impact agricultural practice, where available water supplies are often a limiting factor in plant bioproductivity

    Bioaccumulation and ecotoxicity of carbon nanotubes

    Get PDF
    Carbon nanotubes (CNT) have numerous industrial applications and may be released to the environment. In the aquatic environment, pristine or functionalized CNT have different dispersion behavior, potentially leading to different risks of exposure along the water column. Data included in this review indicate that CNT do not cross biological barriers readily. When internalized, only a minimal fraction of CNT translocate into organism body compartments. The reported CNT toxicity depends on exposure conditions, model organism, CNT-type, dispersion state and concentration. In the ecotoxicological tests, the aquatic organisms were generally found to be more sensitive than terrestrial organisms. Invertebrates were more sensitive than vertebrates. Single-walled CNT were found to be more toxic than double-/multi-walled CNT. Generally, the effect concentrations documented in literature were above current modeled average environmental concentrations. Measurement data are needed for estimation of environmental no-effect concentrations. Future studies with benchmark materials are needed to generate comparable results. Studies have to include better characterization of the starting materials, of the dispersions and of the biological fate, to obtain better knowledge of the exposure/effect relationships

    Vertical and lateral soil moisture patterns on a Mediterranean karst hillslope

    No full text
    The need for a better understanding of factors controlling the variability of soil water content (theta) in space and time to adequately predict the movement of water in the soil and in the interphase soil-atmosphere is widely recognised. In this paper, we analyse how soil properties, surface cover and topography influence soil moisture (theta) over karstic lithology in a sub-humid Mediterranean mountain environment. For this analysis we have used 17 months of theta measurements with a high temporal resolution from different positions on a hillslope at the main recharge area of the Campo de Dalias aquifer, in Sierra de Gador (Almeria, SE Spain). Soil properties and surface cover vary depending on the position at the hillslope, and this variability has an important effect on theta. The higher clay content towards the lower position of the hillslope explains the increase of. downslope at the subsurface horizon throughout the entire period studied. In the surface horizon (0-0.1 m), theta patterns coincide with those found at the subsurface horizon (0.1-0.35 m) during dry periods when the main control is also exerted by the higher percentage of clay that increases downslope and limits water depletion through evaporation. However, in wet periods, the wettest regime is found in the surface horizon at the upper position of the hillslope where plant cover, soil organic matter content, available water, unsaturated hydraulic conductivity (K-unsat) and infiltration rates are higher than in the lower positions. The presence of rock outcrops upslope the theta sampling area, acts as runoff sources, and subsurface flow generation between surface and subsurface horizons also may increase the differences between the upper and the lower positions of the hillslope during wet periods. Both rock and soil cracks and fissures act disconnecting surface water fluxes and reducing run-on to the lower position of the hillslope and thus they affect theta pattern as well as groundwater recharge. Understanding how terrain attributes, ground cover and soil factors interact for controlling theta pattern on karst hillslope is crucial to understand water fluxes in the vadose zone and dominant percolation mechanisms which also contribute to estimate groundwater recharge rates. Therefore, understanding of soil moisture dynamics provides very valuable information for designing rational strategies for the use and management of water resources, which is especially urgent in regions where groundwater supports human consume or key economic activities

    Carbon Nanotubes Induce Growth Enhancement of Tobacco Cells

    No full text
    Carbon nanotubes have shown promise as regulators of seed germination and plant growth. Here, we demonstrate that multiwalled carbon nanotubes (MWCNTs) have the ability to enhance the growth of tobacco cell culture (55–64% increase over control) in a wide range of concentrations (5–500 μg/mL). Activated carbon (AC) stimulated cell growth (16% increase) only at low concentrations (5 μg/mL) while dramatically inhibited the cellular growth at higher concentrations (100–500 μg/mL). We found a correlation between the activation of cells growth exposed to MWCNTs and the upregulation of genes involved in cell division/cell wall formation and water transport. The expression of the tobacco aquaporin (<i>NtPIP1</i>) gene, as well as production of the <i>NtPIP1</i> protein, significantly increased in cells exposed to MWCNTs compared to control cells or those exposed to AC. The expression of marker genes for cell division (<i>CycB</i>) and cell wall extension (<i>NtLRX1</i>) was also up-regulated in cells exposed to MWCNTs compared to control cells or those exposed to activated carbon only

    The seasonal pCO2 cycle at 49°N/16.5°W in the northeastern Atlantic Ocean and what it tells us about biological productivity

    Get PDF
    A 2-year record of mixed layer measurements of CO2 partial pressure (pCO2), nitrate, and other physical, chemical, and biological parameters at a time series site in the northeast Atlantic Ocean (49°N/16.5°W) is presented. The data show average undersaturation of surface waters with respect to atmospheric CO2 levels by about 40 ± 15 ?atm, which gives rise to a perennial CO2 sink of 3.2 ± 1.3 mol m?2 a?1. The seasonal pCO2 cycle is characterized by a summer minimum (winter maximum), which is due to the dominance of biological forcing over physical forcing. Our data document a rapid transition from deep mixing to shallow summer stratification. At the onset of shallow stratification, up to one third of the mixed layer net community production during the productive season had already been accomplished. The combination of high prestratification productivity and rapid onset of stratification appears to have caused the observed particle flux peak early in the season. Mixed layer deepening during fall and winter reventilated CO2 from subsurface respiration of newly exported organic matter, thereby negating more than one third of the carbon drawdown by net community production in the mixed layer. Chemical signatures of both net community production and respiration are indicative of carbon overconsumption, the effects of which may be restricted, though, to the upper ocean. A comparison of the estimated net community production with satellite-based estimates of net primary production shows fundamental discrepancies in the timing of ocean productivity
    corecore