106 research outputs found
Comparative proteomic study of pig muscle proteins during growth and development of an animal
The production of high-quality pork is closely related to the growth and development of muscle tissue. The present article provides a comparative proteomic research of l. dorsi, b. femoris, m. brachiocephalicus during the pigsβ growth and development (at age of 60 days and 180 days). This work was supported by data of electrophoretic methods: one-dimensional electrophoresis according to Laemmli with densitometric assessment in the ImageJ software and two-dimensional electrophoresis according to OβFarrell method with its further processing on the software ImageMaster. The mass spectrometric identification was conducted with the help of the high-performance liquid chromatography (HPLC) system connected to a mass spectrometer; further the data were interpreted by search algorithm Andromeda. When comparing frequency diagrams of one-dimensional electrophoregrams of all three muscle tissues of weaned pigs, the greatest difference was observed for the muscle sample l. dorsi. Comparison of diagrams of muscle tissue samples taken for mature pigs showed a great similarity of all three studied muscles samples. Within the framework of the research, the Fold indicator was calculated. The exceeding its value by more than 2 units is generally considered to be a statistically significant difference. When analyzing two-dimensional electrophoretograms of weaned pigsβ muscles, 18 protein fractions were revealed with Fold > 2. When examining the muscle tissue of mature pigs, 15 of those proteins were found; the differences were mostly detected in the minor protein fractions. The mass spectrometric analysis of the cut bands with well-pronounced differences from the onedimensional electrophoretogram revealed 214 proteins involved to a greater extent in cellular and metabolic processes, physical activity and localization. Growth and development protein β semaphorinβ6B (96.78 kDa) β was revealed in muscle tissue of l. dorsi, a. Also in l. dorsi and b. femoris the growth and development proteins were found: cadherinβ13 (78.23 kDa), cadherinβ7 (87.01 kDa), the Fβactin-cap protein beta subunit (30.66 kDa), and two uncharacterized proteins at 65.60 kDa and 63.88 kDa
Comparative study of technologies for extraction of biologically active substances from the raw material of animal origin
Technologies of isolation and concentration of biologically active substances, developed in the middle of the 20th century, need adjustment and adaptation to modern conditions both to increase the activity of substances and for greater economic efficiency. The aim of the research is the comparison of dynamics of biologically active compounds extraction from porcines pancreas in two methods: the saline method based on 0.9% sodium chloride solution, and the acidic method based on 2.4% trichloroacetic acid solution. Also the purpose of research is to assess the possibilities for further optimization of technologies. The total protein concentration based on the biuret reaction in the samples taken during the extraction, as well as the calculation and analysis of the point degrees and rates of extraction are chosen as the controlled parameters. Local maxima of the protein yields into the extractant media at the 60th, 135th and 255th minute were recorded during saline extraction; and at the 75th and 135th minute during acid extraction. Also the proteomic profile of the extracts was studied. Wide range of compounds with molecular weight of less than 52 kDa was found in extracts based on physiological saline solution, and protein substances of whole presented range of molecular weights in trichloroacetic acid based extracts were considered. The predominance of low molecular weight protein fraction of interest was noted also in this method of extraction in comparison with the other methods of extraction. According to the UniProt database, we assume availability of probable compounds with a molecular weight of less than 30 kDa in the purified acidic extract. The presence of some proteins absent in the final saline extract was noted. The acidic erythrograms showed a weak degrading effect of both types of extracts on the membranes of rat erythrocytes, as well as the cytoprotective effect of acidic ultrafiltrates (less than 3 kDa). The obtained results prove a better efficiency of trichloroacetic acid extraction method used for obtaining a mixture of a wide range of compounds, including biologically active substances of low molecular weight
Supply Chain Management Development for Organization of Public Services in the City: The Experience of Moscow
Abstract- The present article discusses the practical aspects of organizing provision of public services in Moscow by using supply chain strategy. The main difficulties of providing public services in multifunctional centers (MFC) of the capital region are studied, and the main limitations of provision of public services in modern Russian conditions are revealed. Currently, one of the most important tasks of the state is to provide modern, timely and high-quality public services to citizens. In the process of providing public services, the state pays great attention to the development of feedbacks from citizens and uses new ways of providing public services. In Moscow, a Γ’β¬ΕSingle portal of state and municipal services (functions)Γ’β¬ has been created, which provides electronic access to services. With its help, the applicant can submit an application and other necessary documents, and also learn about the progress of the public service. The result of organization of MFC is that the process of providing public services has become more accessible, convenient and much more comfortable. In recent years, the form of activity of MFC has undergone significant changes, mainly due to the rapidly growing needs of citizens. Most changes occurred in the Moscow Multifunctional Center because of the fast growth in demand for services and desire to improve the quality of services. However, problems of citizens' awareness of the newly created services and the possibilities of obtaining them have still remained unresolved
Pleurotus ostreatus (Jacq.:Fr.) Kumm. Hybrids-Promising Producers of Proteins
ΠΡΡΠΈΠΌΠ°Π½Π½Ρ Π½ΠΎΠ²ΠΈΡ
ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΠΈΡ
ΡΡΠ°ΠΌΡΠ² ΡΡΡΡΠ²Π½ΠΈΡ
Π³ΡΠΈΠ±ΡΠ² β Π°ΠΊΡΡΠ°Π»ΡΠ½Π° ΠΏΡΠΎΠ±Π»Π΅ΠΌΠ° Π΄Π»Ρ ΠΏΡΠΎΠΌΠΈΡΠ»ΠΎΠ²ΠΎΠ³ΠΎ Π³ΡΠΈΠ±ΡΠ²Π½ΠΈΡΡΠ²Π°. ΠΠ°Π²Π΄Π°Π½Π½ΡΠΌ ΡΡΠΎΠ³ΠΎ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ Π±ΡΠ»ΠΎ Π²ΠΈΠ·Π½Π°ΡΠ΅Π½Π½Ρ Π±ΡΠΎΡ
ΡΠΌΡΡΠ½ΠΎΠ³ΠΎ ΡΠΊΠ»Π°Π΄Ρ Π½ΠΎΠ²ΠΈΡ
Π³ΡΠ±ΡΠΈΠ΄ΡΠ² Π leurotus ostreatus, ΠΎΡΠΈΠΌΠ°Π½ΠΈΡ
ΡΠ»ΡΡ
ΠΎΠΌ Π°ΡΡΠ±ΡΠΈΠ΄ΡΠ½Π³Ρ. ΠΠ±ΡΠΎΠ»ΡΡΠ½ΠΎ ΡΡΡ
Ρ ΠΌΠ°ΡΡ ΠΌΡΡΠ΅Π»ΡΡ Π²ΠΈΠ·Π½Π°ΡΠ°Π»ΠΈ Π³ΡΠ°Π²ΡΠΌΠ΅ΡΡΠΈΡΠ½ΠΈΠΌ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ, Π²ΠΌΡΡΡ Π±ΡΠ»ΠΊΡΠ² Ρ ΠΌΡΡΠ΅Π»ΡΡ Π³ΡΠ±ΡΠΈΠ΄ΡΠ² β ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΠΎΡΡΡ, Π°Π»ΡΠ±ΡΠΌΡΠ½ΠΈ Ρ Π³Π»ΠΎΠ±ΡΠ»ΡΠ½ΠΈ β ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΎΡΠΎΠΌΠ΅ΡΡΠΈΡΠ½ΠΈΠΌ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ, Π²ΠΌΡΡΡ Π²ΡΠ»ΡΠ½ΠΈΡ
Π°ΠΌΡΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡ Ρ ΠΌΡΡΠ΅Π»ΡΡ β ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Ρ
ΡΠΎΠΌΠ°ΡΠΎΠ³ΡΠ°ΡΡΡ Π½Π° ΠΏΠ°ΠΏΠ΅ΡΡ. ΠΠΈΠ²ΡΠ΅Π½ΠΎ Π½ΠΎΠ²Ρ Π³ΡΠ±ΡΠΈΠ΄ΠΈ Π³Π»ΠΈΠ²ΠΈ Π·Π²ΠΈΡΠ°ΠΉΠ½ΠΎΡ, ΡΠΊΡ ΠΏΡΠΎΠ΄ΡΠΊΡΡΡΡ Π±ΡΠ»ΡΡΡ ΠΊΡΠ»ΡΠΊΡΡΡΡ Π°ΠΌΡΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡ (Π.22-41), Π±ΡΠ»ΠΊΡΠ², Π°Π»ΡΠ±ΡΠΌΡΠ½ΡΠ² ΡΠ° Π³Π»ΠΎΠ±ΡΠ»ΡΠ½ΡΠ² (Π.30-41), Π½ΡΠΆ ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½ΠΈΠΉ ΡΡΠ°ΠΌ ΠΠ-35 ΡΠ³ΠΎΡΡΡΠΊΠΎΡ ΡΠ΅Π»Π΅ΠΊΡΡΡ. ΠΡΠΈ ΡΡΠΎΠΌΡ ΡΡΠ°ΠΌ Π.30-41 Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΡΡΡΡΡ Π²ΠΈΡΠΎΠΊΠΈΠΌ ΡΡΠ²Π½Π΅ΠΌ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π·Π° Π±ΡΠ»ΠΊΠΎΠ²ΠΈΠΌΠΈ ΡΠ΅ΡΠΎΠ²ΠΈΠ½Π°ΠΌΠΈ, Π° ΡΡΠ°ΠΌ Π.22-41 Ρ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΠΈΠΌ ΠΏΡΠΎΠ΄ΡΡΠ΅Π½ΡΠΎΠΌ Π°ΠΌΡΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡ, Ρ ΡΠΎΠΌΡ ΡΠΈΡΠ»Ρ ΠΉ Π½Π΅Π·Π°ΠΌΡΠ½Π½ΠΈΡ
. ΠΠΎΠ²Ρ Π³ΡΠ±ΡΠΈΠ΄ΠΈ ΠΏΡΠΈΠ΄Π°ΡΠ½Ρ Π΄Π»Ρ Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½Ρ Π² Ρ
Π°ΡΡΠΎΠ²ΡΠΉ ΠΏΡΠΎΠΌΠΈΡΠ»ΠΎΠ²ΠΎΡΡΡ, Ρ ΡΡΠ»ΡΡΡΠΊΠΎΠΌΡ Π³ΠΎΡΠΏΠΎΠ΄Π°ΡΡΡΠ²Ρ ΡΠΊ Π±ΡΠΎΠ΄ΠΎΠ±Π°Π²ΠΊΠ° Π΄Π»Ρ Ρ
Π°ΡΡΡΠ²Π°Π½Π½Ρ ΡΠ²Π°ΡΠΈΠ½. Producing of new potential stamps of edible fungi is a pressing issue for industrial mushroom production. The present investigation was aimed at the identification of biochemical composition of new hybrids of Pleurotus ostreatus, received by outbreeding. Absolutely dry mycelium weight was defined by gravimetric method. Protein content in mycelium was found by Lowry method, content of albumins and globulins β by spectrophotometric method, content of free amino acids β by paper chromatography method. The new hybrids of Pleurotus ostreatus, that produce a greater number of amino acids (D.22-41), proteins, albumins and globulins (D.30-41) than the control stamp HK-35 of the Hungary selection, were investigated. Herewith the D.30-41 stamp is characterized by a high level of productivity of protein substances and the D.22-41 stamp is a potential producer of amino acids, including indispensable ones.ΠΡΡΡΠΎΠ²Π° Π. Π. β ΠΊΠ°Π½Π΄ΠΈΠ΄Π°Ρ Π±ΡΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΈΡ
Π½Π°ΡΠΊ, Π΄ΠΎΡΠ΅Π½Ρ ΠΠΎΠ½Π΅ΡΡΠΊΠΎΠ³ΠΎ Π½Π°ΡΡΠΎΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ½ΡΠ²Π΅ΡΡΠΈΡΠ΅ΡΡ;
ΠΠ΅ΠΌΡΠ΅Π½ΠΊΠΎ Π‘. Π. β ΠΊΠ°Π½Π΄ΠΈΠ΄Π°Ρ Π±ΡΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΈΡ
Π½Π°ΡΠΊ, Π΄ΠΎΡΠ΅Π½Ρ ΠΠΎΠ½Π΅ΡΡΠΊΠΎΠ³ΠΎ Π½Π°ΡΡΠΎΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ½ΡΠ²Π΅ΡΡΠΈΡΠ΅ΡΡ;
ΠΡΠΊ Π. Π. β Π°ΡΠΏΡΡΠ°Π½Ρ ΠΠΠ ΠΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΡ Π±ΡΠΎΠ»ΠΎΠ³ΡΡ ΡΠ° Π³Π΅Π½Π΅ΡΠΈΠΊ
Increasing potato yield using foliar fertilization to boost growth
To date, the use of fertilizers has become firmly embedded in advanced crop cultivation technologies, as the main component of obtaining high and sustainable yields. The nutritional regime of plants cannot be optimized only with the help of macronutrients. They also need trace elements that can increase the resistance of plants to adverse growing conditions, diseases and pests. However, the high cost of such fertilizers makes it necessary to develop new more effective and less expensive drugs. Therefore, in modern potato cultivation technologies, much attention is paid to non-root top dressing. As a result of three-fold leaf treatments with the developed fertilizer, the yield increase of potato variety Gulliver was 0.4β¦5.2 t/ha, variety Vimpel 2.0β¦5.1 t/ha, variety Matushka 0.1β¦4.1 t/ha
ΠΠΎΡΠ΅ΠΊΡΡΡ Π΄ΠΎΠΊΡΠΎΡΡΠ±ΡΡΠΈΠ½ΡΠ½Π΄ΡΠΊΠΎΠ²Π°Π½ΠΎΡ Π³Π΅ΠΏΠ°ΡΠΎΡΠΎΠΊΡΠΈΡΠ½ΠΎΡΡΡ ΠΏΠΎΡ ΡΠ΄Π½ΠΈΠΌΠΈ Π³Π»ΡΠΊΠΎΠ·Π°ΠΌΡΠ½Ρ ΡΠ° ΡΡ ΠΊΠΎΠΌΠ±ΡΠ½Π°ΡΡΡΠΌΠΈ Π· ΠΊΠ²Π΅ΡΡΠ΅ΡΠΈΠ½ΠΎΠΌ Π² Π΅ΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΡ Π½Π° ΡΡΡΠ°Ρ
The article presents the results of the pharmacological study of glucosamine derivatives and their combinations with flavonoid quercetin as correctors of hepatotoxicity of anthracycline antibiotics, particularly doxorubicin. As the test compounds substances of glucosamine hydrochloride in conventionally therapeutic doses of 50 mg/kg, and the combination of aminosugars of glucosamine hydrochloride and N-acetylglucosamine with flavonoid quercetin in the ratio of 3:1 equivalent to glucosamine hydrochloride in a conventionally therapeutic dose of 82 mg/kg have been studied. Quercetin was used in the dose of 20.5 mg/kg as a reference medicine. To assess the degree of liver damage and severity of the hepatoprotective activity of the objects selected a number of biochemical parameters (the level of TBA-reactants of the serum and the liver homogenate, the activity of indicator enzymes of ALT, AST cytolysis, the content of the total protein, glucose, urea in the serum) have been determined; the the histomorphologic study of liver tissue has been conducted. According to the experimental results it has been found that all tested compounds have the ability to reduce the toxic effects of doxorubicin in relation to the liver. With respect to overall rating of the parameters studied a combination of aminosugars of glucosamine hydrochloride and N-acetylglucosamine with quercetin has shown the most significant hepatoprotective effect, and it can be explained by a synergistic action of its individual components directed to inhibition of free radical processes and cytolysis, inhibition of inflammation, urea formation function, protein synthesis in the liver, normalization of the carbohydrate metabolism and decrease of hypoplastic changes in the liver tissue. The results of the study experimentally substantiate the use perspectiveness of a combination of aminosugars of glucosamine hydrochloride and N-acetylglucosamine with quercetin for pharmacological correction of toxic effects of anthracycline antibiotics during anticancer therapy.ΠΡΠΈΠ²Π΅Π΄Π΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ
Π³Π»ΡΠΊΠΎΠ·Π°ΠΌΠΈΠ½Π° ΠΈ ΠΈΡ
ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΠΉ Ρ ΡΠ»Π°Π²ΠΎΠ½ΠΎΠΈΠ΄ΠΎΠΌ ΠΊΠ²Π΅ΡΡΠ΅ΡΠΈΠ½ΠΎΠΌ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΊΠΎΡΡΠ΅ΠΊΡΠΎΡΠΎΠ² Π³Π΅ΠΏΠ°ΡΠΎΡΠΎΠΊΡΠΈΡΠ½ΠΎΡΡΠΈ Π°Π½ΡΡΠ°ΡΠΈΠΊΠ»ΠΈΠ½ΠΎΠ²ΡΡ
Π°Π½ΡΠΈΠ±ΠΈΠΎΡΠΈΠΊΠΎΠ², Π² ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ Π΄ΠΎΠΊΡΠΎΡΡΠ±ΠΈΡΠΈΠ½Π°. Π ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΡΡ
ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ ΠΈΠ·ΡΡΠ°Π»ΠΈΡΡ ΡΡΠ±ΡΡΠ°Π½ΡΠΈΠΈ Π³Π»ΡΠΊΠΎΠ·Π°ΠΌΠΈΠ½Π° Π³ΠΈΠ΄ΡΠΎΡ
Π»ΠΎΡΠΈΠ΄Π° Π² ΡΡΠ»ΠΎΠ²Π½ΠΎ ΡΠ΅ΡΠ°ΠΏΠ΅Π²ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π΄ΠΎΠ·Π΅ 50 ΠΌΠ³/ΠΊΠ³ ΠΈ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΡ Π°ΠΌΠΈΠ½ΠΎΡΠ°Ρ
Π°ΡΠΎΠ² Π³Π»ΡΠΊΠΎΠ·Π°ΠΌΠΈΠ½Π° Π³ΠΈΠ΄ΡΠΎΡ
Π»ΠΎΡΠΈΠ΄Π° ΠΈ N-Π°ΡΠ΅ΡΠΈΠ»Π³Π»ΡΠΊΠΎΠ·Π°ΠΌΠΈΠ½Π° Ρ ΡΠ»Π°Π²ΠΎΠ½ΠΎΠΈΠ΄ΠΎΠΌ ΠΊΠ²Π΅ΡΡΠ΅ΡΠΈΠ½ΠΎΠΌ Π² ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΈ 3:1 Π² ΠΏΠ΅ΡΠ΅ΡΡΠ΅ΡΠ΅ Π½Π° Π³Π»ΡΠΊΠΎΠ·Π°ΠΌΠΈΠ½Π° Π³ΠΈΠ΄ΡΠΎΡ
Π»ΠΎΡΠΈΠ΄ Π² ΡΡΠ»ΠΎΠ²Π½ΠΎ ΡΠ΅ΡΠ°ΠΏΠ΅Π²ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π΄ΠΎΠ·Π΅ 82 ΠΌΠ³/ΠΊΠ³. Π ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠ° ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈ ΠΊΠ²Π΅ΡΡΠ΅ΡΠΈΠ½ Π² Π΄ΠΎΠ·Π΅ 20,5 ΠΌΠ³/ΠΊΠ³. ΠΠ»Ρ ΠΎΡΠ΅Π½ΠΊΠΈ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΠΏΠΎΡΠ°ΠΆΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΠ΅Π½ΠΈ ΠΈ Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΠΎΡΡΠΈ Π³Π΅ΠΏΠ°ΡΠΎΡΡΠΎΠΏΠ½ΠΎΠ³ΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ Π²ΡΠ±ΡΠ°Π½Π½ΡΡ
ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΠΈ ΡΡΠ΄ Π±ΠΈΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ (ΡΡΠΎΠ²Π΅Π½Ρ Π’ΠΠ-ΡΠ΅Π°ΠΊΡΠ°Π½ΡΠΎΠ² ΡΡΠ²ΠΎΡΠΎΡΠΊΠΈ ΠΊΡΠΎΠ²ΠΈ ΠΈ Π³ΠΎΠΌΠΎΠ³Π΅Π½Π°ΡΠ° ΠΏΠ΅ΡΠ΅Π½ΠΈ, Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΈΠ½Π΄ΠΈΠΊΠ°ΡΠΎΡΠ½ΡΡ
ΡΠ΅ΡΠΌΠ΅Π½ΡΠΎΠ² ΡΠΈΡΠΎΠ»ΠΈΠ·Π° ΠΠ»ΠΠ’, ΠΡΠΠ’, ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΠΎΠ±ΡΠ΅Π³ΠΎ Π±Π΅Π»ΠΊΠ°, Π³Π»ΡΠΊΠΎΠ·Ρ, ΠΌΠΎΡΠ΅Π²ΠΈΠ½Ρ Π² ΡΡΠ²ΠΎΡΠΎΡΠΊΠ΅ ΠΊΡΠΎΠ²ΠΈ), Π° ΡΠ°ΠΊΠΆΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π³ΠΈΡΡΠΎΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠΊΠ°Π½ΠΈ ΠΏΠ΅ΡΠ΅Π½ΠΈ. ΠΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌ ΠΎΠΏΡΡΠ° ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Π²ΡΠ΅ ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΡΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΠΏΡΠΎΡΠ²ΠΈΠ»ΠΈ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡ ΠΊ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΡ ΡΠΎΠΊΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΎΡΠ²Π»Π΅Π½ΠΈΠΉ Π΄ΠΎΠΊΡΠΎΡΡΠ±ΠΈΡΠΈΠ½Π° ΠΏΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΈ ΠΊ ΠΏΠ΅ΡΠ΅Π½ΠΈ. ΠΠΎ ΡΡΠΌΠΌΠ°ΡΠ½ΠΎΠΌΡ ΡΠ΅ΠΉΡΠΈΠ½Π³Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π½ΡΡ
ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π·Π½Π°ΡΠΈΠΌΠΎΠ΅ Π³Π΅ΠΏΠ°ΡΠΎΡΡΠΎΠΏΠ½ΠΎΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΠΏΡΠΎΡΠ²ΠΈΠ»Π° ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΡ Π°ΠΌΠΈΠ½ΠΎΡΠ°Ρ
Π°ΡΠΎΠ² Π³Π»ΡΠΊΠΎΠ·Π°ΠΌΠΈΠ½Π° Π³ΠΈΠ΄ΡΠΎΡ
Π»ΠΎΡΠΈΠ΄Π° ΠΈ N-Π°ΡΠ΅ΡΠΈΠ»Π³Π»ΡΠΊΠΎΠ·Π°ΠΌΠΈΠ½Π° Ρ ΠΊΠ²Π΅ΡΡΠ΅ΡΠΈΠ½ΠΎΠΌ, ΡΡΠΎ ΠΌΠΎΠΆΠ΅Ρ ΠΎΠ±ΡΡΡΠ½ΡΡΡΡΡ ΡΠΈΠ½Π΅ΡΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ Π΅Π΅ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠ², Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π½ΡΠΌ Π½Π° ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΠΎΡΠ°Π΄ΠΈΠΊΠ°Π»ΡΠ½ΡΡ
ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² ΠΈ ΡΠΈΡΠΎΠ»ΠΈΠ·Π°, ΡΠ³Π½Π΅ΡΠ΅Π½ΠΈΠ΅ Π²ΠΎΡΠΏΠ°Π»Π΅Π½ΠΈΡ, Π²ΠΎΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ ΠΌΠΎΡΠ΅Π²ΠΈΠ½ΠΎΠΎΠ±ΡΠ°Π·ΡΡΡΠ΅ΠΉ, Π±Π΅Π»ΠΎΠΊΡΠΈΠ½ΡΠ΅Π·ΠΈΡΡΡΡΠ΅ΠΉ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΏΠ΅ΡΠ΅Π½ΠΈ, Π½ΠΎΡΠΌΠ°Π»ΠΈΠ·Π°ΡΠΈΡ ΡΠ³Π»Π΅Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΎΠ±ΠΌΠ΅Π½Π° ΠΈ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΠ΅ Π³ΠΈΠΏΠΎΠΏΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ Π² ΡΠΊΠ°Π½ΠΈ ΠΏΠ΅ΡΠ΅Π½ΠΈ. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎ ΠΎΠ±ΠΎΡΠ½ΠΎΠ²ΡΠ²Π°ΡΡ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΠΈ Π°ΠΌΠΈΠ½ΠΎΡΠ°Ρ
Π°ΡΠΎΠ² Π³Π»ΡΠΊΠΎΠ·Π°ΠΌΠΈΠ½Π° Π³ΠΈΠ΄ΡΠΎΡ
Π»ΠΎΡΠΈΠ΄Π° ΠΈ N-Π°ΡΠ΅ΡΠΈΠ»Π³Π»ΡΠΊΠΎΠ·Π°ΠΌΠΈΠ½Π° Ρ ΠΊΠ²Π΅ΡΡΠ΅ΡΠΈΠ½ΠΎΠΌ Π΄Π»Ρ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠΊΠΎΡΡΠ΅ΠΊΡΠΈΠΈ ΡΠΎΠΊΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΡΠ΅ΠΊΡΠΎΠ² Π°Π½ΡΡΠ°ΡΠΈΠΊΠ»ΠΈΠ½ΠΎΠ²ΡΡ
Π°Π½ΡΠΈΠ±ΠΈΠΎΡΠΈΠΊΠΎΠ² ΠΏΡΠΈ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΎΠΏΡΡ
ΠΎΠ»Π΅Π²ΠΎΠΉ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ.ΠΠ°Π²Π΅Π΄Π΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΈ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΎΠ³ΠΎ Π²ΠΈΠ²ΡΠ΅Π½Π½Ρ ΠΏΠΎΡ
ΡΠ΄Π½ΠΈΡ
Π³Π»ΡΠΊΠΎΠ·Π°ΠΌΡΠ½Ρ ΡΠ° ΡΡ
ΠΊΠΎΠΌΠ±ΡΠ½Π°ΡΡΠΉ Π· ΡΠ»Π°Π²ΠΎΠ½ΠΎΡΠ΄ΠΎΠΌ ΠΊΠ²Π΅ΡΡΠ΅ΡΠΈΠ½ΠΎΠΌ Ρ ΡΠΊΠΎΡΡΡ ΠΊΠΎΡΠ΅ΠΊΡΠΎΡΡΠ² Π³Π΅ΠΏΠ°ΡΠΎΡΠΎΠΊΡΠΈΡΠ½ΠΎΡΡΡ Π°Π½ΡΡΠ°ΡΠΈΠΊΠ»ΡΠ½ΠΎΠ²ΠΈΡ
Π°Π½ΡΠΈΠ±ΡΠΎΡΠΈΠΊΡΠ², Π·ΠΎΠΊΡΠ΅ΠΌΠ° Π΄ΠΎΠΊΡΠΎΡΡΠ±ΡΡΠΈΠ½Ρ. Π ΡΠΊΠΎΡΡΡ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΡΠ²Π°Π½ΠΈΡ
ΡΠΏΠΎΠ»ΡΠΊ Π²ΠΈΠ²ΡΠ°Π»ΠΈΡΡ ΡΡΠ±ΡΡΠ°Π½ΡΡΡ Π³Π»ΡΠΊΠΎΠ·Π°ΠΌΡΠ½Ρ Π³ΡΠ΄ΡΠΎΡ
Π»ΠΎΡΠΈΠ΄Ρ Π² ΡΠΌΠΎΠ²Π½ΠΎ-ΡΠ΅ΡΠ°ΠΏΠ΅Π²ΡΠΈΡΠ½ΡΠΉ Π΄ΠΎΠ·Ρ 50 ΠΌΠ³/ΠΊΠ³ ΡΠ° ΠΊΠΎΠΌΠ±ΡΠ½Π°ΡΡΡ Π°ΠΌΡΠ½ΠΎΡΡΠΊΡΡΠ² Π³Π»ΡΠΊΠΎΠ·Π°ΠΌΡΠ½Ρ Π³ΡΠ΄ΡΠΎΡ
Π»ΠΎΡΠΈΠ΄Ρ Ρ N-Π°ΡΠ΅ΡΠΈΠ»Π³Π»ΡΠΊΠΎΠ·Π°ΠΌΡΠ½Ρ Π· ΡΠ»Π°Π²ΠΎΠ½ΠΎΡΠ΄ΠΎΠΌ ΠΊΠ²Π΅ΡΡΠ΅ΡΠΈΠ½ΠΎΠΌ Ρ ΡΠΏΡΠ²Π²ΡΠ΄Π½ΠΎΡΠ΅Π½Π½Ρ 3:1 Π² ΠΏΠ΅ΡΠ΅ΡΠ°Ρ
ΡΠ½ΠΊΡ Π½Π° Π³Π»ΡΠΊΠΎΠ·Π°ΠΌΡΠ½Ρ Π³ΡΠ΄ΡΠΎΡ
Π»ΠΎΡΠΈΠ΄ Π² ΡΠΌΠΎΠ²Π½ΠΎ-ΡΠ΅ΡΠ°ΠΏΠ΅Π²ΡΠΈΡΠ½ΡΠΉ Π΄ΠΎΠ·Ρ 82 ΠΌΠ³/ΠΊΠ³. Π£ ΡΠΊΠΎΡΡΡ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΡ ΠΏΠΎΡΡΠ²Π½ΡΠ½Π½Ρ Π²ΠΈΠΊΠΎΡΠΈΡΡΠΎΠ²ΡΠ²Π°Π»ΠΈ ΠΊΠ²Π΅ΡΡΠ΅ΡΠΈΠ½ Ρ Π΄ΠΎΠ·Ρ 20,5 ΠΌΠ³/ΠΊΠ³. ΠΠ»Ρ ΠΎΡΡΠ½ΠΊΠΈ ΡΡΡΠΏΠ΅Π½Ρ ΡΡΠ°ΠΆΠ΅Π½Π½Ρ ΠΏΠ΅ΡΡΠ½ΠΊΠΈ ΡΠ° Π²ΠΈΡΠ°ΠΆΠ΅Π½ΠΎΡΡΡ Π³Π΅ΠΏΠ°ΡΠΎΡΡΠΎΠΏΠ½ΠΎΡ Π΄ΡΡ ΠΎΠ±ΡΠ°Π½ΠΈΡ
ΠΎΠ±βΡΠΊΡΡΠ² Π²ΠΈΠ·Π½Π°ΡΠ°Π»ΠΈ Π½ΠΈΠ·ΠΊΡ Π±ΡΠΎΡ
ΡΠΌΡΡΠ½ΠΈΡ
ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΡΠ² (ΡΡΠ²Π΅Π½Ρ Π’ΠΠ-ΡΠ΅Π°ΠΊΡΠ°Π½ΡΡΠ² ΡΠΈΡΠΎΠ²Π°ΡΠΊΠΈ ΠΊΡΠΎΠ²Ρ ΡΠ° Π³ΠΎΠΌΠΎΠ³Π΅Π½Π°ΡΡ ΠΏΠ΅ΡΡΠ½ΠΊΠΈ, Π°ΠΊΡΠΈΠ²Π½ΡΡΡΡ ΡΠ½Π΄ΠΈΠΊΠ°ΡΠΎΡΠ½ΠΈΡ
ΡΠ΅ΡΠΌΠ΅Π½ΡΡΠ² ΡΠΈΡΠΎΠ»ΡΠ·Ρ ΠΠ»ΠΠ’, ΠΡΠΠ’, Π²ΠΌΡΡΡ Π·Π°Π³Π°Π»ΡΠ½ΠΎΠ³ΠΎ Π±ΡΠ»ΠΊΠ°, Π³Π»ΡΠΊΠΎΠ·ΠΈ, ΡΠ΅ΡΠΎΠ²ΠΈΠ½ΠΈ Ρ ΡΠΈΡΠΎΠ²Π°ΡΡΡ ΠΊΡΠΎΠ²Ρ), Π° ΡΠ°ΠΊΠΎΠΆ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π³ΡΡΡΠΎΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΡΡΠ½Π΅ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ ΡΠΊΠ°Π½ΠΈΠ½ΠΈ ΠΏΠ΅ΡΡΠ½ΠΊΠΈ. ΠΠ° ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌΠΈ Π΄ΠΎΡΠ»ΡΠ΄Ρ Π²ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΠΎ Π²ΡΡ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΡΠ²Π°Π½Ρ ΡΠΏΠΎΠ»ΡΠΊΠΈ ΠΏΡΠΎΡΠ²ΠΈΠ»ΠΈ Π·Π΄Π°ΡΠ½ΡΡΡΡ Π΄ΠΎ Π·ΠΌΠ΅Π½ΡΠ΅Π½Π½Ρ ΡΠΎΠΊΡΠΈΡΠ½ΠΈΡ
ΠΏΡΠΎΡΠ²ΡΠ² Π΄ΠΎΠΊΡΠΎΡΡΠ±ΡΡΠΈΠ½Ρ ΠΏΠΎ Π²ΡΠ΄Π½ΠΎΡΠ΅Π½Π½Ρ Π΄ΠΎ ΠΏΠ΅ΡΡΠ½ΠΊΠΈ. ΠΠ° ΡΡΠΌΠ°ΡΠ½ΠΈΠΌ ΡΠ΅ΠΉΡΠΈΠ½Π³ΠΎΠΌ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½ΠΈΡ
ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΡΠ² Π½Π°ΠΉΠ±ΡΠ»ΡΡ Π·Π½Π°ΡΡΡΡ Π³Π΅ΠΏΠ°ΡΠΎΡΡΠΎΠΏΠ½Ρ Π΄ΡΡ Π²ΠΈΡΠ²ΠΈΠ»Π° ΠΊΠΎΠΌΠ±ΡΠ½Π°ΡΡΡ Π°ΠΌΡΠ½ΠΎΡΡΠΊΡΡΠ² Π³Π»ΡΠΊΠΎΠ·Π°ΠΌΡΠ½Ρ Π³ΡΠ΄ΡΠΎΡ
Π»ΠΎΡΠΈΠ΄Ρ Ρ N-Π°ΡΠ΅ΡΠΈΠ»Π³Π»ΡΠΊΠΎΠ·Π°ΠΌΡΠ½Ρ Π· ΠΊΠ²Π΅ΡΡΠ΅ΡΠΈΠ½ΠΎΠΌ, ΡΠΎ ΠΌΠΎΠΆΠ΅ ΠΏΠΎΡΡΠ½ΡΠ²Π°ΡΠΈΡΡ ΡΠΈΠ½Π΅ΡΠ³ΡΡΠ½ΠΎΡ Π΄ΡΡΡ ΡΡ ΠΎΠΊΡΠ΅ΠΌΠΈΡ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΡΠ², ΡΠΏΡΡΠΌΠΎΠ²Π°Π½ΠΎΡ Π½Π° ΡΠ½Π³ΡΠ±ΡΠ²Π°Π½Π½Ρ Π²ΡΠ»ΡΠ½ΠΎΡΠ°Π΄ΠΈΠΊΠ°Π»ΡΠ½ΠΈΡ
ΠΏΡΠΎΡΠ΅ΡΡΠ² Ρ ΡΠΈΡΠΎΠ»ΡΠ·Ρ, ΠΏΡΠΈΠ³Π½ΡΡΠ΅Π½Π½Ρ Π·Π°ΠΏΠ°Π»Π΅Π½Π½Ρ, Π²ΡΠ΄Π½ΠΎΠ²Π»Π΅Π½Π½Ρ ΡΠ΅ΡΠΎΠ²ΠΈΠ½ΠΎΡΡΠ²ΠΎΡΡΡΡΠΎΡ, Π±ΡΠ»ΠΎΠΊΡΠΈΠ½ΡΠ΅Π·ΡΡΡΠΎΡ ΡΡΠ½ΠΊΡΡΠΉ ΠΏΠ΅ΡΡΠ½ΠΊΠΈ, Π½ΠΎΡΠΌΠ°Π»ΡΠ·Π°ΡΡΡ Π²ΡΠ³Π»Π΅Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΎΠ±ΠΌΡΠ½Ρ ΡΠ° Π·ΠΌΠ΅Π½ΡΠ΅Π½Π½Ρ Π³ΡΠΏΠΎΠΏΠ»Π°ΡΡΠΈΡΠ½ΠΈΡ
Π·ΠΌΡΠ½ Ρ ΡΠΊΠ°Π½ΠΈΠ½Ρ ΠΏΠ΅ΡΡΠ½ΠΊΠΈ. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΠΈ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ Π΅ΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎ ΠΎΠ±Π³ΡΡΠ½ΡΠΎΠ²ΡΡΡΡ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΡΡΡΡ Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½Ρ ΠΊΠΎΠΌΠ±ΡΠ½Π°ΡΡΡ Π°ΠΌΡΠ½ΠΎΡΡΠΊΡΡΠ² Π³Π»ΡΠΊΠΎΠ·Π°ΠΌΡΠ½Ρ Π³ΡΠ΄ΡΠΎΡ
Π»ΠΎΡΠΈΠ΄Ρ Ρ N-Π°ΡΠ΅ΡΠΈΠ»Π³Π»ΡΠΊΠΎΠ·Π°ΠΌΡΠ½Ρ Π· ΠΊΠ²Π΅ΡΡΠ΅ΡΠΈΠ½ΠΎΠΌ Π΄Π»Ρ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠΊΠΎΡΠ΅ΠΊΡΡΡ ΡΠΎΠΊΡΠΈΡΠ½ΠΈΡ
Π΅ΡΠ΅ΠΊΡΡΠ² Π°Π½ΡΡΠ°ΡΠΈΠΊΠ»ΡΠ½ΠΎΠ²ΠΈΡ
Π°Π½ΡΠΈΠ±ΡΠΎΡΠΈΠΊΡΠ² ΠΏΡΠΈ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ ΠΏΡΠΎΡΠΈΠΏΡΡ
Π»ΠΈΠ½Π½ΠΎΡ ΡΠ΅ΡΠ°ΠΏΡΡ
Factors to affect inbred beet plants while developing material for linear selection
Considering its capacities, the generative system ofΒ Beta vulgarisΒ L. is regarded as highly productive. While inbreeding, the reproductive potential of cross-pollinated beet plants with gametophytic self-incompatibility (SI) changes significantly and is determined by a joint effect of multiple factors including the level of inbred depression. In the present study, original data have been obtained revealing relationships between inbred beet seed productivity, its self-incompatibility and microgametophyte parameters, which is crucial for developing and maintaining constant fertile beet lines. It has been discovered that inbred depression increases the number of sterile microgametes and anomalous pollen grains, reduces pollen fertility and the length of pollen tubes. As a result, the seed yield in inbred beet progeny, including SI ones, reduces significantly just after the third inbreeding. At the same time, highly productive inbred beet is characterized by a lower rate of pollen tube growthΒ in vitro. In inbred plants, there is no close relationship between pollen viability and seed productivity, because the elimination of germinated male gametes and degeneration of seed embryos may go over the entire period of fertilization starting its progamic phase. The SI plants have more degenerating embryos than self-fertile ones, but seed vessel outgrowth in the seeds with abortive embryos makes them morphologically similar to fertile seeds. For that reason, when assessing inbred beet plants based on their self-incompatibility/self-fertility, one should consider the qualitative characteristics of the seeds. Using the method of recurrent selection based on such factors as seed productivity, pollen tube length and field germination rate increase the output of plant forms with a potentially high self-compatibility in their progeny. To support such genotypes in the progeny, one has to, starting from the third inbreeding, perform sib crossing to reduce the negative effect of inbred depression and self-incompatibility
ΠΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΈΡΠΏΡΡΠ°Π½ΠΈΠ΅ ΡΠΎΡΡΠΎΠ² ΡΠ²ΡΠΊΠ»Ρ ΡΡΠΎΠ»ΠΎΠ²ΠΎΠΉ ΡΠ΅Π»Π΅ΠΊΡΠΈΠΈ Π€ΠΠΠΠ£ Π€ΠΠ¦Π
Relevance. The value of table beetroot as an indispensable vegetable crop in a rational human diet is beyond doubt. It is possible to fill the shortage of production of this crop in the Russian Federation by increasing yields, which is facilitated by a number of factors. It is believed that the yield depends more on the variety, but the role of the medium in identifying varietal characteristics is also of great importance. In this regard, the varieties and hybrids recommended for production, along with high potential productivity, should be characterized by a wide range of adaptive properties (environmental resistance) to the stressful effects of environmental conditions. One of the effective methods to determine the adaptability of varieties to the conditions of a particular region is their simultaneous assessment in a number of geographically remote locations, which allows expanding the range of their use.Materials and methods. Research work on the environmental testing of six varieties of beetroot was carried out in 2020 according to generally accepted methods on the basis of the branches of the FSBSI Federal Scientific Vegetable Center. As a standard, the Bordo 237 variety was used - recommended for cultivation in all regions of the Russian Federation. Ecological assessment of the environment as a background for selection and assessment of the adaptive ability of varieties was carried out according to the methodology of A.V. Kilchevsky and L.V. Khotyleva.Results. According to the totality of all parameters, the most adaptive for cultivation in different regions of the Russian Federation, according to the combination of yield and marketability, it is possible to recommend the varieties of beetroot Karina and Bordo 237; according to the mass of commercial root crops - Karina and Gazpadynya. The varieties characterized by the greatest responsiveness to the improvement of growing conditions were: Lyubava, Gaspadynya, Dobrynya. The most informative background for identifying the potential productivity of varieties is the environment on the Biryuchekutsk station, on the ecological stability of the complex of signs β the Voronezh station. The most typical environments for growing beets on the grounds of "yield" and "marketability" are the conditions of Biryuchekutsk station, by weight of commercial root crop β Voronezh station.ΠΠΊΡΡΠ°Π»ΡΠ½ΠΎΡΡΡ. Π¦Π΅Π½Π½ΠΎΡΡΡ ΡΠ²Π΅ΠΊΠ»Ρ ΡΡΠΎΠ»ΠΎΠ²ΠΎΠΉ, ΠΊΠ°ΠΊ Π½Π΅Π·Π°ΠΌΠ΅Π½ΠΈΠΌΠΎΠΉ ΠΎΠ²ΠΎΡΠ½ΠΎΠΉ ΠΊΡΠ»ΡΡΡΡΡ Π² ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠΌ ΠΏΠΈΡΠ°Π½ΠΈΠΈ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ° Π½Π΅ Π²ΡΠ·ΡΠ²Π°Π΅Ρ ΡΠΎΠΌΠ½Π΅Π½ΠΈΡ. ΠΠΎΡΠΏΠΎΠ»Π½ΠΈΡΡ Π΄Π΅ΡΠΈΡΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π° Π΄Π°Π½Π½ΠΎΠΉ ΠΊΡΠ»ΡΡΡΡΡ Π² Π Π€ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π·Π° ΡΡΠ΅Ρ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ ΡΡΠΎΠΆΠ°ΠΉΠ½ΠΎΡΡΠΈ, ΡΠ΅ΠΌΡ ΡΠΏΠΎΡΠΎΠ±ΡΡΠ²ΡΠ΅Ρ ΡΡΠ΄ ΡΠ°ΠΊΡΠΎΡΠΎΠ². Π‘ΡΠΈΡΠ°Π΅ΡΡΡ, ΡΡΠΎ ΡΡΠΎΠΆΠ°ΠΉΠ½ΠΎΡΡΡ Π² Π±ΠΎΠ»ΡΡΠ΅ΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ ΡΠΎΡΡΠ°, ΠΎΠ΄Π½Π°ΠΊΠΎ ΡΠΎΠ»Ρ ΡΡΠ΅Π΄Ρ Π² Π²ΡΡΠ²Π»Π΅Π½ΠΈΠΈ ΡΠΎΡΡΠΎΠ²ΡΡ
ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠ² ΡΠ°ΠΊΠΆΠ΅ ΠΈΠΌΠ΅Π΅Ρ Π±ΠΎΠ»ΡΡΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅. Π ΡΠ²ΡΠ·ΠΈ Ρ ΡΡΠΈΠΌ, ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡΠ΅ΠΌΡΠ΅ Π΄Π»Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π° ΡΠΎΡΡΠ° ΠΈ Π³ΠΈΠ±ΡΠΈΠ΄Ρ Π½Π°ΡΡΠ΄Ρ Ρ Π²ΡΡΠΎΠΊΠΎΠΉ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠ²Π½ΠΎΡΡΡΡ, Π΄ΠΎΠ»ΠΆΠ½Ρ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΠΎΠ²Π°ΡΡΡΡ ΡΠΈΡΠΎΠΊΠΈΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½ΠΎΠΌ ΠΏΡΠΈΡΠΏΠΎΡΠΎΠ±ΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΡΠ²ΠΎΠΉΡΡΠ² (ΡΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΡΡΡΡ) ΠΊ ΡΡΡΠ΅ΡΡΠΎΠ²ΡΠΌ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠΌ ΡΡΠ»ΠΎΠ²ΠΈΠΉ ΡΡΠ΅Π΄Ρ. ΠΠ΄Π½ΠΈΠΌ ΠΈΠ· Π΄Π΅ΠΉΡΡΠ²Π΅Π½Π½ΡΡ
ΠΏΡΠΈΡΠΌΠΎΠ², ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡΠΈΡ
ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΡΠΈΡΠΏΠΎΡΠΎΠ±Π»Π΅Π½Π½ΠΎΡΡΡ ΡΠΎΡΡΠΎΠ² ΠΊ ΡΡΠ»ΠΎΠ²ΠΈΡΠΌ ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅Π³ΠΈΠΎΠ½Π°, ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΈΡ
ΠΎΠ΄Π½ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½Π°Ρ ΠΎΡΠ΅Π½ΠΊΠ° Π² ΡΡΠ΄Π΅ Π³Π΅ΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈ-ΠΎΡΠ΄Π°Π»Π΅Π½Π½ΡΡ
ΠΏΡΠ½ΠΊΡΠΎΠ², ΠΊΠΎΡΠΎΡΠ°Ρ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠ°ΡΡΠΈΡΠΈΡΡ Π°ΡΠ΅Π°Π» ΠΈΡ
ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ.ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ. ΠΠ°ΡΡΠ½ΠΎ-ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΡΠΊΡΡ ΡΠ°Π±ΠΎΡΡ ΠΏΠΎ ΡΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΌΡ ΠΈΡΠΏΡΡΠ°Π½ΠΈΡ ΡΠ΅ΡΡΠΈ ΡΠΎΡΡΠΎΠ² ΡΠ²Π΅ΠΊΠ»Ρ ΡΡΠΎΠ»ΠΎΠ²ΠΎΠΉ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π² 2020 Π³ΠΎΠ΄Ρ ΠΏΠΎ ΠΎΠ±ΡΠ΅ΠΏΡΠΈΠ½ΡΡΡΠΌ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ°ΠΌ Π½Π° Π±Π°Π·Π΅ ΡΠΈΠ»ΠΈΠ°Π»ΠΎΠ² Π€ΠΠΠΠ£ Π€ΠΠ¦Π. Π ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΡΡΠ°Π½Π΄Π°ΡΡΠ° ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈ ΡΠΎΡΡ ΠΠΎΡΠ΄ΠΎ 237 - ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Π½Π½ΡΠΉ Π΄Π»Ρ Π²ΡΡΠ°ΡΠΈΠ²Π°Π½ΠΈΡ Π²ΠΎ Π²ΡΠ΅Ρ
ΡΠ΅Π³ΠΈΠΎΠ½Π°Ρ
Π Π€. ΠΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΡΡ ΠΎΡΠ΅Π½ΠΊΡ ΡΡΠ΅Π΄, ΠΊΠ°ΠΊ ΡΠΎΠ½ΠΎΠ² Π΄Π»Ρ ΠΎΡΠ±ΠΎΡΠ°, ΠΈ ΠΎΡΠ΅Π½ΠΊΡ Π°Π΄Π°ΠΏΡΠΈΠ²Π½ΠΎΠΉ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΠΈ ΡΠΎΡΡΠΎΠ² ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΏΠΎ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ΅ Π.Π. ΠΠΈΠ»ΡΡΠ΅Π²ΡΠΊΠΎΠ³ΠΎ ΠΈ Π.Π. Π₯ΠΎΡΡΠ»Π΅Π²ΠΎΠΉ.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΠΎ ΡΠΎΠ²ΠΎΠΊΡΠΏΠ½ΠΎΡΡΠΈ Π²ΡΠ΅Ρ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΠΊ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π°Π΄Π°ΠΏΡΠΈΠ²Π½ΡΠΌ Π΄Π»Ρ Π²ΡΡΠ°ΡΠΈΠ²Π°Π½ΠΈΡ Π² ΡΠ°Π·Π½ΡΡ
ΡΠ΅Π³ΠΈΠΎΠ½Π°Ρ
Π Π€, ΠΏΠΎ ΡΠΎΡΠ΅ΡΠ°Π½ΠΈΡ ΡΡΠΎΠΆΠ°ΠΉΠ½ΠΎΡΡΠΈ ΠΈ ΡΠΎΠ²Π°ΡΠ½ΠΎΡΡΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°ΡΡ ΡΠΎΡΡΠ° ΡΠ²Π΅ΠΊΠ»Ρ ΡΡΠΎΠ»ΠΎΠ²ΠΎΠΉ ΠΠ°ΡΠΈΠ½Π° ΠΈ ΠΠΎΡΠ΄ΠΎ 237; ΠΏΠΎ ΠΌΠ°ΡΡΠ΅ ΡΠΎΠ²Π°ΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΡΠ½Π΅ΠΏΠ»ΠΎΠ΄Π° ΠΠ°ΡΠΈΠ½Π° ΠΈ ΠΠ°ΡΠΏΠ°Π΄ΡΠ½Ρ. ΠΠ°ΠΈΠ±ΠΎΠ»ΡΡΠ΅ΠΉ ΠΎΡΠ·ΡΠ²ΡΠΈΠ²ΠΎΡΡΡΡ Π½Π° ΡΠ»ΡΡΡΠ΅Π½ΠΈΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΠΉ Π²ΡΡΠ°ΡΠΈΠ²Π°Π½ΠΈΡ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΠΎΠ²Π°Π»ΠΈΡΡ ΡΠΎΡΡΠ°: ΠΡΠ±Π°Π²Π°, ΠΠ°ΡΠΏΠ°Π΄ΡΠ½Ρ, ΠΠΎΠ±ΡΡΠ½Ρ. ΠΠ°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠ²Π½ΡΠΌ ΡΠΎΠ½ΠΎΠΌ Π΄Π»Ρ Π²ΡΡΠ²Π»Π΅Π½ΠΈΡ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΠΎΡΡΠΎΠ² ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΡΠ΅Π΄Π° Π½Π° ΠΠΈΡΡΡΠ΅ΠΊΡΡΡΠΊΠΎΠΉ ΠΠ‘ΠΠ‘, Π½Π° ΡΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΡΡ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΡ ΠΏΠΎ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΡ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠ² β ΠΠΎΡΠΎΠ½Π΅ΠΆΡΠΊΠΎΠΉ ΠΠΠ‘. ΠΠ°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΠΈΠΏΠΈΡΠ½ΡΠΌΠΈ ΡΡΠ΅Π΄Π°ΠΌΠΈ Π΄Π»Ρ Π²ΡΡΠ°ΡΠΈΠ²Π°Π½ΠΈΡ ΡΠ²Π΅ΠΊΠ»Ρ ΡΡΠΎΠ»ΠΎΠ²ΠΎΠΉ ΠΏΠΎ ΠΏΡΠΈΠ·Π½Π°ΠΊΠ°ΠΌ Β«ΡΡΠΎΠΆΠ°ΠΉΠ½ΠΎΡΡΡΒ» ΠΈ Β«ΡΠΎΠ²Π°ΡΠ½ΠΎΡΡΡΒ» ΡΠ²Π»ΡΡΡΡΡ ΡΡΠ»ΠΎΠ²ΠΈΡ ΠΠΈΡΡΡΠ΅ΠΊΡΡΡΠΊΠΎΠΉ ΠΠ‘ΠΠ‘, ΠΏΠΎ ΠΌΠ°ΡΡΠ΅ ΡΠΎΠ²Π°ΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΡΠ½Π΅ΠΏΠ»ΠΎΠ΄Π° β ΠΠΎΡΠΎΠ½Π΅ΠΆΡΠΊΠΎΠΉ ΠΠΠ‘
Investigation of the Processes of Photooxidation of an Aqueous Solution of Nitrofural
ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎ ΡΠΎΡΠΎΠΊΠ°ΡΠ°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΌΡ ΠΎΠΊΠΈΡΠ»Π΅Π½ΠΈΡ
Π½ΠΈΡΡΠΎΡΡΡΠ°Π»Π° Π² Π²ΠΎΠ΄Π½ΡΡ
ΡΠ°ΡΡΠ²ΠΎΡΠ°Ρ
Π² ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠΈ ΠΌΠΈΠΊΡΠΎΠ΄ΠΎΠ±Π°Π²ΠΎΠΊ ΠΏΠ΅ΡΠΎΠΊΡΠΈΠ΄Π° Π²ΠΎΠ΄ΠΎΡΠΎΠ΄Π°
ΠΈ ΠΎΠΊΡΠΎΡΡΠ»ΡΡΠ°ΡΠ° ΡΠΈΡΠ°Π½Π°. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΠ΅ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΠΎΠΊΠΈΡΠ»Π΅Π½ΠΈΡ Π½Π°Π±Π»ΡΠ΄Π°ΡΡΡΡ ΠΏΡΠΈ
ΡΠΎΡΠΎΠΎΠΊΠΈΡΠ»Π΅Π½ΠΈΠΈ Π² ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠΈ ΠΏΠ΅ΡΠΎΠΊΡΠΈΠ΄Π° Π²ΠΎΠ΄ΠΎΡΠΎΠ΄Π° ΠΈ Π΄ΠΎΡΡΠΈΠ³Π°ΡΡ 99 %. ΠΡΠΈΠ²Π΅Π΄Π΅Π½Ρ Π°Π½Π°ΠΌΠΎΡΡΠΎΠ·Ρ
ΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΊΡΠΈΠ²ΡΡ
Π΄Π΅ΡΡΡΡΠΊΡΠΈΠΈ Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠ°ΡΡΠ²ΠΎΡΠ° Π½ΠΈΡΡΠΎΡΡΡΠ°Π»Π° Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΡΠΎΡΠΎΠ»ΠΈΠ·Π°.
Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΎΡΠ½ΠΎΠ²Π½ΡΠΌΠΈ ΠΏΡΠΎΠ΄ΡΠΊΡΠ°ΠΌΠΈ Π΄Π΅ΡΡΡΡΠΊΡΠΈΠΈ Π½ΠΈΡΡΠΎΡΡΡΠ°Π»Π° Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΡΠΎΡΠΎΠ»ΠΈΠ·Π° Π΅Π³ΠΎ
Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠ°ΡΡΠ²ΠΎΡΠ° ΡΠ²Π»ΡΡΡΡΡ ΠΎΠ΄Π½ΠΎΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΊΠ°ΡΠ±ΠΎΠ½ΠΎΠ²ΡΠ΅ ΠΊΠΈΡΠ»ΠΎΡΡ ΠΈ Π°Π»ΡΠ΄Π΅Π³ΠΈΠ΄ΡThe results of a study on the photocatalytic oxidation of nitrofural in aqueous solutions in the presence of microadditives of hydrogen peroxide and titanium oxosulfate are presented. It has been established that the maximum oxidation states are observed during photooxidation in the presence of hydrogen peroxide and reach 99 %. Anamorphoses of the kinetic curves of the degradation of an aqueous solution of nitrofural during photolysis are presented. It has been established that the main degradation products of nitrofural during the photolysis of its aqueous solution are monobasic carboxylic acids and aldehyde
Architecture of composite multilayer semiconductor nanostructures
The problem of ensuring the operational parameters of composite multilayer semiconductor nanoscale structures at the design technology stages is solved. A mathematical model based on the physics of processes occurring in the structure during operation is developed. The problem is solved for the resonant-tunnelling AlGaAs nanoheterostructures
- β¦