14 research outputs found

    An interactive stratospheric aerosol model intercomparison of solar geoengineering by stratospheric injection of SO2 or accumulation-mode sulfuric acid aerosols

    Get PDF
    Studies of stratospheric solar geoengineering have tended to focus on modification of the sulfuric acid aerosol layer, and almost all climate model experiments that mechanistically increase the sulfuric acid aerosol burden assume injection of SO2. A key finding from these model studies is that the radiative forcing would increase sublinearly with increasing SO2 injection because most of the added sulfur increases the mass of existing particles, resulting in shorter aerosol residence times and aerosols that are above the optimal size for scattering. Injection of SO3 or H2SO4 from an aircraft in stratospheric flight is expected to produce particles predominantly in the accumulation-mode size range following microphysical processing within an expanding plume, and such injection may result in a smaller average stratospheric particle size, allowing a given injection of sulfur to produce more radiative forcing. We report the first multi-model intercomparison to evaluate this approach, which we label AM-H2SO4 injection. A coordinated multi-model experiment designed to represent this SO3- or H2SO4-driven geoengineering scenario was carried out with three interactive stratospheric aerosol microphysics models: the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM2) with the Whole Atmosphere Community Climate Model (WACCM) atmospheric configuration, the Max-Planck Institute's middle atmosphere version of ECHAM5 with the HAM microphysical module (MAECHAM5-HAM) and ETH's SOlar Climate Ozone Links with AER microphysics (SOCOL-AER) coordinated as a test-bed experiment within the Geoengineering Model Intercomparison Project (GeoMIP). The intercomparison explores how the injection of new accumulation-mode particles changes the large-scale particle size distribution and thus the overall radiative and dynamical response to stratospheric sulfur injection. Each model used the same injection scenarios testing AM-H2SO4 and SO2 injections at 5 and 25 Tg(S) yr-1 to test linearity and climate response sensitivity. All three models find that AM-H2SO4 injection increases the radiative efficacy, defined as the radiative forcing per unit of sulfur injected, relative to SO2 injection. Increased radiative efficacy means that when compared to the use of SO2 to produce the same radiative forcing, AM-H2SO4 emissions would reduce side effects of sulfuric acid aerosol geoengineering that are proportional to mass burden. The model studies were carried out with two different idealized geographical distributions of injection mass representing deployment scenarios with different objectives, one designed to force mainly the midlatitudes by injecting into two grid points at 30° N and 30° S, and the other designed to maximize aerosol residence time by injecting uniformly in the region between 30° S and 30° N. Analysis of aerosol size distributions in the perturbed stratosphere of the models shows that particle sizes evolve differently in response to concentrated versus dispersed injections depending on the form of the injected sulfur (SO2 gas or AM-H2SO4 particulate) and suggests that prior model results for concentrated injection of SO2 may be strongly dependent on model resolution. Differences among models arise from differences in aerosol formulation and differences in model dynamics, factors whose interplay cannot be easily untangled by this intercomparison. Copyright © 2022 Debra K. Weisenstein et al

    Analysis of the global atmospheric background sulfur budget in a multi-model framework

    Get PDF
    Sulfate aerosol in the stratosphere is an important climate driver, causing solar dimming in the years after major volcanic eruptions. Hence, a growing number of general circulation models are adapting interactive sulfur and aerosol schemes to improve the representation of relevant chemical processes and associated feedbacks. However, uncertainties of these schemes are not well constrained. Stratospheric sulfate is modulated by natural emissions of sulfur-containing species, including volcanic eruptive, and anthropogenic emissions. Model intercomparisons have examined the effects of volcanic eruptions, whereas the background conditions of the sulfur cycle have not been addressed in a global model intercomparison project. Assessing background conditions in global models allows us to identify model discrepancies as they are masked by large perturbations such as volcanic eruptions, yet may still matter in the aftermath of such a disturbance. Here, we analyze the atmospheric burden, seasonal cycle, and vertical and meridional distribution of the main sulfur species among nine global atmospheric aerosol models that are widely used in the stratospheric aerosol research community. We use observational and reanalysis data to evaluate model results. Overall, models agree that the three dominant sulfur species in terms of burdens (sulfate aerosol, OCS, and SO2) make up about 98 % of stratospheric sulfur and 95 % of tropospheric sulfur. However, models vary considerably in the partitioning between these species. Models agree that anthropogenic emission of SO2 strongly affects the sulfate aerosol burden in the Northern Hemispheric troposphere, while its importance is very uncertain in other regions. The total deposition of sulfur varies among models, deviating by a factor of two, but models agree that sulfate aerosol is the main form in which sulfur is deposited. Additionally, the partitioning between wet and dry deposition fluxes is highly model dependent. We investigate the areas of greatest variability in the sulfur species burdens and find that inter-model variability is low in the tropics and increases towards the poles. Seasonality in the southern hemisphere is depicted very similar among models. Differences are largest in the dynamically active northern hemispheric extratropical region, hence some of the differences could be attributed to the differences in the representation of the stratospheric circulation among underlying general circulation models. This study highlights that the differences in the atmospheric sulfur budget among the models arise from the representation of both chemical and dynamical processes, whose interplay complicates the bias attribution. Several problematic points identified for individual models are related to the specifics of the chemistry schemes, model resolution, and representation of cross-tropopause transport in the extratropics. Further model intercomparison research is needed focusing on the clarification of the reasons for biases, given also the importance of this topic for the stratospheric aerosol injection studies.</p

    Analysis of the global atmospheric background sulfur budget in a multi-model framework

    Get PDF
    A growing number of general circulation models are adapting interactive sulfur and aerosol schemes to improve the representation of relevant physical and chemical processes and associated feedbacks. They are motivated by investigations of climate response to major volcanic eruptions and potential solar geoengineering scenarios. However, uncertainties in these schemes are not well constrained. Stratospheric sulfate is modulated by emissions of sulfur-containing species of anthropogenic and natural origin, including volcanic activity. While the effects of volcanic eruptions have been studied in the framework of global model intercomparisons, the background conditions of the sulfur cycle have not been addressed in such a way. Here, we fill this gap by analyzing the distribution of the main sulfur species in nine global atmospheric aerosol models for a volcanically quiescent period. We use observational data to evaluate model results. Overall, models agree that the three dominant sulfur species in terms of burdens (sulfate aerosol, OCS, and SO2) make up about 98 % stratospheric sulfur and 95 % tropospheric sulfur. However, models vary considerably in the partitioning between these species. Models agree that anthropogenic emission of SO2 strongly affects the sulfate aerosol burden in the northern hemispheric troposphere, while its importance is very uncertain in other regions, where emissions are much lower. Sulfate aerosol is the main deposited species in all models, but the values deviate by a factor of 2. Additionally, the partitioning between wet and dry deposition fluxes is highly model dependent. Inter-model variability in the sulfur species is low in the tropics and increases towards the poles. Differences are largest in the dynamically active northern hemispheric extratropical region and could be attributed to the representation of the stratospheric circulation. The differences in the atmospheric sulfur budget among the models arise from the representation of both chemical and dynamical processes, whose interplay complicates the bias attribution. Several problematic points identified for individual models are related to the specifics of the chemistry schemes, model resolution, and representation of cross-tropopause transport in the extratropics. Further model intercomparison research is needed with a focus on the clarification of the reasons for biases, given the importance of this topic for the stratospheric aerosol injection studies.</p

    Analysis of the global atmospheric background sulfur budget in a multi-model framework

    No full text
    A growing number of general circulation models are adapting interactive sulfur and aerosol schemes to improve the representation of relevant physical and chemical processes and associated feedbacks. They are motivated by investigations of climate response to major volcanic eruptions and potential solar geoengineering scenarios. However, uncertainties in these schemes are not well constrained. Stratospheric sulfate is modulated by emissions of sulfur-containing species of anthropogenic and natural origin, including volcanic activity. While the effects of volcanic eruptions have been studied in the framework of global model intercomparisons, the background conditions of the sulfur cycle have not been addressed in such a way. Here, we fill this gap by analyzing the distribution of the main sulfur species in nine global atmospheric aerosol models for a volcanically quiescent period. We use observational data to evaluate model results. Overall, models agree that the three dominant sulfur species in terms of burdens (sulfate aerosol, OCS, and SO2) make up about 98 % stratospheric sulfur and 95 % tropospheric sulfur. However, models vary considerably in the partitioning between these species. Models agree that anthropogenic emission of SO2 strongly affects the sulfate aerosol burden in the northern hemispheric troposphere, while its importance is very uncertain in other regions, where emissions are much lower. Sulfate aerosol is the main deposited species in all models, but the values deviate by a factor of 2. Additionally, the partitioning between wet and dry deposition fluxes is highly model dependent. Inter-model variability in the sulfur species is low in the tropics and increases towards the poles. Differences are largest in the dynamically active northern hemispheric extratropical region and could be attributed to the representation of the stratospheric circulation. The differences in the atmospheric sulfur budget among the models arise from the representation of both chemical and dynamical processes, whose interplay complicates the bias attribution. Several problematic points identified for individual models are related to the specifics of the chemistry schemes, model resolution, and representation of cross-tropopause transport in the extratropics. Further model intercomparison research is needed with a focus on the clarification of the reasons for biases, given the importance of this topic for the stratospheric aerosol injection studies.</p

    Man or Human? A Note on the Translation of Ἄνθρωπος in Mark 10.1-9 and Masculinity Studies

    No full text
    The past decades have seen an increased sensitivity among Bible translators when it comes to matters of gender, in particular in relation to inclusive and exclusive aspects of language and their rendering in translation. Building on this feminist agenda, it can also be asked, following the lead of masculinity studies in general and its use in biblical studies in particular, what role masculinity plays in texts and their translation. This will be explored in this contribution using the example of the meaning and translation of ἄνθρωπος in Mark 10.7 and 9, which, it will be proposed, is, for gender-sensitive exegetical reasons, best translated as “man” (in the exclusive sense of the word), rather than as “human” (as an inclusive expression)
    corecore