6,338 research outputs found

    Exergy assessment of topsoil fertility

    Get PDF
    Soil degradation, affecting around 38% of the world''s cropland, threatens the global food supply. Due to the soil''s complexity, the measure of soil degradation that involves the loss of soil fertility due to crop system management processes represents an unsolved problem. Exergy is a property with the potential to be used in soil fertility and/or degradation analysis. A methodology to determine the exergy value fenced in a fertile soil due to its inorganic and organic components is established in this study and will be applied to evaluate soil fertility, degradation, and quality. As a first step, the exergy of perfect topsoil with optimum characteristics called "OptSOIL" is determined. The "OptSOIL" is established by agronomic expertise and will allow establishing a general theoretical reference suitable to execute exergy assessments of soils and compare the degradation grade of any soil concerning the best possible. Consequently, we introduce a perfect fertile planetary crust made of “OptNUT” and “OptSOM” invariant and independent of the different local textures, but not independent of their water content and aeration. We call this imaginary crust -copiously fertile- Pristinia as opposed to Thanatia, a dead state referring to abiotic resources. Thus, any real agricultural soil will be an intermediate soil between Pristinia and Thanatia. This idea might serve to quantitatively diagnose an assessment of all the concepts by which soil is degraded. The methodology has been validated through laboratory agronomic tests for different soils, concluding that exergy is a rigorous indicator to measure topsoil fertility. © 2021 The Author

    Exergy-based assessment of polymers production and recycling: An application to the automotive sector

    Get PDF
    In the last century, the economic growth has been accompanied by a worldwide diffusion of polymers for multiple applications. However, there is a growing attention to the environmental pollution and energy consumption linked to the unconditional use of plastic. In the present work, exergy is used as a measure of the resource consumption during the life cycle of polymers. Nine commercially diffused polymers are chosen, and their production chains are identified according to the “grave to cradle” approach. The global Embodied Exergy (EE) is calculated as the sum of the contribution of each step of the chain, including the production process and the Exergy Replacement Cost (ERC) of the fossil fuel. Then, recycling routes and the associated exergy consumption are analysed. Thermodynamic recycling indexes are developed depending on the final product, namely the crude polymeric material and the oil derivatives or structural molecules. The main results show that some commonly used polymers have a considerable impact in terms of EE (e.g., PET). Recycling indexes encourage the recycling processes, which are always energetically convenient (from 10% to 60% of exergy savings) compared with the production from virgin raw material. Results from EE calculation are used for the thermodynamic assessment of the plastic content of vehicle components, to obtain useful information for recycling practices development. Copyright

    Multivariate association of compositional data matrices with applications in comparing hyperspectral images

    Get PDF
    It is well-known in image processing that, by varying the wavelength, any material reflects and absorbs in a different way the solar radiation. This is registered by hyperspectral sensors, which collect multivariate discrete images in a series of contiguous wavelength bands, providing the spectral curves, which can distinguish between materials. In order to partition a multivariate image in regions belonging to different materials, we need to compare these regions which are previously modelled by using compositional data matrices, where the entries in each row is a statistical discrete distribution of the radiance values (columns). These rows correspond to distinct but contiguos wavelengths. Thus the distribution in a row is very similar to the distribution in close rows. To measure this proximity, we use Hellinger distance between rows, which provides a distance matrix. Given two hyperspectral regions of an image providing two compositional data matrices, we ob- tain the corresponding distance matrices and, by using metric multidimensional scaling, we compute two sets of principal coordinates, which are related by a multivariate association measure based on canonical correlations. We ilustrate this approach comparing some multivariate regions of images captured by hyperspec- tral remote sensors

    Laser-generated plasma as a spectroscopic light source

    Get PDF
    Laser generated plasma as spectroscopic light sourc

    Invisibility and perfect absorption of all-dielectric metasurfaces originated from the transverse Kerker effect

    Get PDF
    Dielectric metasurfaces perform unique photonics effects and serve as the engine of nowadays light-matter technologies. Here, we suggest theoretically and demonstrate experimentally the realization of a high transparency effect in a novel type of all-dielectric metasurface, where each constituting meta-atom of the lattice presents the so-called transverse Kerker effect. In contrast to Huygens' metasurfaces, both phase and amplitude of the incoming wave remain unperturbed at the resonant frequency and, consequently, our metasurface totally operates in the invisibility regime. We prove experimentally, for the microwave frequency range, that both phase and amplitude of the transmitted wave from the metasurface remain almost unaffected. Finally, we demonstrate both numerically and experimentally and explain theoretically in detail a novel mechanism to achieve perfect absorption of the incident light enabled by the resonant response of the dielectric metasurfaces placed in the vicinity of a conducting substrate. In the subdiffractive limit, we show the aforementioned effects are mainly determined by the optical response of the constituting meta-atoms rather than the collective lattice contributions. With the spectrum scalability, our findings can be incorporated in engineering devices for energy harvesting, nonlinear phenomena and filters applications.Comment: 10 pages, 6 figure

    Transforming AdaPT to Ada

    Get PDF
    This paper describes how the main features of the proposed Ada language extensions intended to support distribution, and offered as possible solutions for Ada9X can be implemented by transformation into standard Ada83. We start by summarizing the features proposed in a paper (Gargaro et al, 1990) which constitutes the definition of the extensions. For convenience we have called the language in its modified form AdaPT which might be interpreted as Ada with partitions. These features were carefully chosen to provide support for the construction of executable modules for execution in nodes of a network of loosely coupled computers, but flexibly configurable for different network architectures and for recovery following failure, or adapting to mode changes. The intention in their design was to provide extensions which would not impact adversely on the normal use of Ada, and would fit well in style and feel with the existing standard. We begin by summarizing the features introduced in AdaPT

    Programming in a proposed 9X distributed Ada

    Get PDF
    The studies of the proposed Ada 9X constructs for distribution, now referred to as AdaPT are reported. The goals for this time period were to revise the chosen example scenario and to begin studying about how the proposed constructs might be implemented. The example scenario chosen is the Submarine Combat Information Center (CIC) developed by IBM for the Navy. The specification provided by IBM was preliminary and had several deficiencies. To address these problems, some changes to the scenario specification were made. Some of the more important changes include: (1) addition of a system database management function; (2) addition of a fourth processing unit to the standard resources; (3) addition of an operator console interface function; and (4) removal of the time synchronization function. To implement the CIC scenario in AdaPT, the decided strategy were publics, partitions, and nodes. The principle purpose for implementing the CIC scenario was to demonstrate how the AdaPT constructs interact with the program structure. While considering ways that the AdaPt constructs might be translated to Ada 83, it was observed that the partition construct could reasonably be modeled as an abstract data type. Although this gives a useful method of modeling partitions, it does not at all address the configuration aspects on the node construct

    Transforming AdaPT to Ada9x

    Get PDF
    How the concepts of AdaPT can be transformed into programs using the object oriented features proposed in the preliminary mapping for Ada9x are described. Emphasizing, as they do, the importance of data types as units of program, these features match well with the development of partitions as translations into Abstract Data Types which was exploited in the Ada83 translation covered in report R3. By providing a form of polymorphic type, the Ada83 version also gives support for the conformant partition idea which could be achieved in Ada83 only by using UNCHECKED CONVERSIONS. It is assumed that the reader understands AdaPT itself, but the translation into Ada83 is briefly reviewed, by applying it to a small example. This is then used to show how the same translation would be achieved in the 9x version. It is important to appreciate that the distribution features which are proposed in current mapping are not used or discussed in any detail, as those are not well matched to the AdaPT approach. Critical evaluation and comparison of these approaches is given in a separate report

    A 4-μW 0.8-V Rail-to-Rail Input/Output CMOS Fully Differential OpAmp

    Get PDF
    This paper presents an ultra low power rail-to-rail input/output operational amplifier (OpAmp) designed in a low cost 0.18 μm CMOS technology. In this OpAmp, rail-to-rail input operation is enabled by using complementary input pairs with gm control. To maximize the output swing a rail-to-rail output stage is employed. For low-voltage low-power operation, the operating transistors in the input and output stage are biased in the sub-threshold region. The simulated DC open loop gain is 51 dB, and the slew-rate is 0.04 V/μs with a 10 pF capacitive load connected to each of the amplifier outputs. For the same load, the simulated unity gain frequency is 131 kHz with a 64º phase margin. A common-mode feed-forward circuit (CMFF) increases CMRR, reducing drastically the variations in the output common mode voltage and keeping the DC gain almost constant. In fact, their relative error remains below 1.2 % for a (-20ºC, +120ºC) temperature span. In addition, the proposed OpAmp is very simple and consumes only 4 μW at 0.8 V supply
    corecore