
NASA-CR-193117

i=Transforming AdaPT to Ada9x

¢ii

lain=

L__

u

Stephen J. Goldsack
A. A. Holzbach-Valero

......... Imperial College, London, England

z
I,-4

=E

O
LL
U3

_0

N

ON ul ,-_
f_J f0 t_

I M-

ON _
Z :3 o

0_",

4J._
Ufl Ul

05

,--I

_0

M3

L'_

Richard A. Volz

Raymond S. Waldrop
Texas A&M University

_ . _ --

_ April 8, 1993

.................. Cooperative Agreement NCC 9-16

Research Activity No. SE.35

NASA Johnson Space Center

Engineering Directorate

Right Data Systems Division

t- t-
u 0

z _4a

P'_ P0 C: _
ON_ r0

(_o r-
U I,--,--

I 4J

z "o 0 un __

© ©

Research Institute for Computing and Information Systems

- University of Houston-Clear Lake

TECHNICAL REPORT

https://ntrs.nasa.gov/search.jsp?R=19930019837 2020-03-17T04:39:01+00:00Z

w

w

!

r

i

RICIS Preface

This research was conducted under auspices of the Research Institute for Computing

and Information Systems by Raymond S. Waldrop and Richard A. Volz of Texas

A&M University and A. A. Holzbacher-Valero and Stephen J. Goldsack of Imperial

College, London, England. Dr. E.T. Dickerson served as RICIS research
coordinator.

Funding was provided by the Engineering Directorate, NASAIJSC through

Cooperative Agreement NCC 9-16 between the NASA Johnson Space Center and the

University of Houston-Clear Lake. The NASA research coordinator for this activity

was Terry D. Humphrey of the Systems Software Section, Flight Data Systems

Division, Engineering Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the authors and

should not be interpreted as representative of the official policies, either express or

implied, of UHCL, RICIS, NASA or the United States Government.

w

w

w

w

w

w

=

w

L_

Transforming AdaPT to Ada9x
Task T8 Report

F

n

5

m

NASA Subcontract #074
Cooperative Agreement NCC-9-t 6

Research Activity # SE.35

Period of Performance: May 1, 1990 - March 31, 1993

L

w

m

u

Submitted to
RICIS

Submitted by
S. J. Goldsack, Imperial College, London, England

A. A. Holzbacher-Valero, Imperial College, London, England
R. Volz, Texas A&M University

R. Waldrop, Texas A&M University

_ _

w

w

Z

W

w

u

Transforming AdaPT to Ada 9X

S..J.Gotdsack..k..\. I[olzbacher-\alero,

Imperial College, London

tt.Volz. R. \Valdrop
Texas :\&M l'niversitv

= = April S. 1993

w

=

rm_

Abstract

Fhis paper constitutes report F{8 for NASA subcontract _)7l ('ooperatiw" .kareement

NCC-9-16. It describes how the concepts of AdaPT ,'an be transformed into programs using

lhe object oriented features proposed in the preliminary mapping fi)r A,lagx. Emphasising,

as they ,1o. the importance of data types as units of program, these features match well with

lhe development of partitions as translations into Abstract Data Types which was exploited

in the Ada83 translation covered in report tt3. By providing a form of polymorphic type, the

.\dagx version also gives support for the contbrmant partition idea which couht Be achieved

in Ada83 only by using UNC[[EC[(ED_COXVER,q[O.V.

The paper assumes that the reader understands AdaPT itself, but brietty reviews the

translation into Ada83, by applying it to a small example. This is then used to show how

the same translation would be achieved in the 9x version.

It is important to appreciate that this paper does not use. or oven discuss in any detail,

the ,listribution features which are proposed in current mapping, as those are not well

matched to the ,.\daPT approach. Critical evaluation and comparison of these approaches

is given in a separate report.

i,d

w

!

_=

ORIGINAL PAQE fS

OF POOR QUALITY

1 Introduction

J

T=

w

L2

w

[ma0

w

In report R3 of the present project, a study was presented of the translation of an .\daPT

program into executable code in .\da,53. Since that report further work has been done on _his

-ubject. which has been presented in an up-dated version of that report.

.\n original aim of the project was to develop further the :\daPT proposal with the intention

,)f influencing, or at least helping to guide the mapping team in developing an approach to

distribution for Ada9x. Since that time_ the mapping team has issued their language proposals.

including an annex which supports the distribution of Ada 9X programs. Important changes

proposed in Ada which affect this project are:

• support for a form of inheritance through type extension, based on an adaptation of the

.kda83 concept of the derived type. and

• the introduction of a model for distribution through which Ada programs can be developed

in a standard way for distributed targets.

The present report describes the ,,xtension of the work in T3 to cover .\(tagx. To a large

,,xtent the changes to Ada are upwards compatible with Ada83. so programs developed using

our translation of AdaPT into .\da_3 wilt also provide correct Ada9x programs. However. in

several ways the proposals for the mapping give enhanced support for AdaPT. and simplify the
translation.

• Record aggregation, as used to translate partitions with "'withed" packages into Ada83.

is more directly provided by the use of type derivation in the proposed new version of the

language.

• A form of polymorphism, permitting execution time binding of procedure calls to alterna-

tive versions of the procedure definition enables conformant partitions to t)e more directly

supported, without the use of unchecked conversion.

The Ada83 translation makes extensive use of the notion of an abstract data type to translate

the partition. The importance of such structures is greatly enhanced in Ada9x. since the model

for object oriented structuring using inheritance is mainly developed around the data type. [t

is therefore straightforward to relate our Ada83 translation approach to one for the proposed

form of Ada9x. The present paper aims to show how this works, and how the AdaPT notions

can be supported in the proposed form of Ada9x.

The distribution features of the new language mapping also turn around a concept of a

partition. This is not, however, the same as the partitions in AdaPT, and they are not used

in the present translation. For a comparison of the two approaches to distribution, please see

report R2R which makes a detailed comparison of the approaches, and provide a critique of the

mapping proposal.

L

w

= .

w

w

r_
w

tlma

L_

W

w

g

2 The Example

Throughout this paper, the features of AdaPT and their translations into .\daB3 and _\dagx will

be illustrated by outlining a program to simulate the children's game of "'battleships". This i<

a game tot two players. Each has a squared board representin< a naval battle area. the squares

boin_ identified by the coordinates (n.m) where n and m are integers. Each player arranges. ,tl

lhe start of the game. a certain number of ships on his board..\ ship occupies one, _wo. three

or four adjacent squares dependent on the kind of ship. (A battleship, for example, occupies
lbur squares.) Details of the number of ships, the size of the board etc. are not necessary for

he purposes of this paper.

EIaving selected the disposition of their ships, these boards are fixed data. Players now lira,

m turn at their opponents' boards..\ move consists of selecting a square and announcing the
choice to the opponent, who replies with the information "missed"," hit". or "'sunk". lhe la,_t

situation arising when all the squares occupied by a ship have been hit. Each player now keeps

a record of what he has discovered about his opponent's board by maintainin¢ an image of that

board, initially blank, on which he gradually tills in information gained lw his earlier shols.

The winner is tile first to sink all his opponent's ships.

In the simulation, players are modelled by partitions which request inputs from and report

lhe results to the console. It is convenient reintroduce a referee, who keeps the boards wi_h

the fixed data of both players, receives the shots and reports on their effects. The complete

program therefore consists of three virtual nodes, two derived from a common type. It would

be possible to configure the program on a network of one two or three physical processors. This

arrangement is illustrated in figure L.

.\ variant of the program would

while the other was the computer
have the same interface as the real

implementation would be different.

be a situation in which one of the players was a real person.

itself. In the second version the "'pseudo-player" would

player who interacts via the keyboard and screen, but the

This will provide an example of a conformant partition.

2.1 Public

.\s explained above, a public unit allows the sharing of definitions of types, constants and

services between nodes or between partitions within nodes. To this end, it has the following
features: it is identical to a package, except that it is not allowed to have variable state. When

appropriate, the defined types may be private. A public unit may introduce type definitions

with associated operations, forming an Abstract Data Type. It may have with clauses for other

public units, but for no packages.

In the example the following public unit provides the types for parameters of calls between
the partitions.

public Share&Types is

m

w

w

n

w

_ 7

w

Player 1

• Opponem "_

l]oard J

Ptayer

Referee

O_pon_t
Board

Player I

I

Figure 1: arrangement of tile players and refer¢,e.

-- This public unit provides the types to be shared between the

-- partitions Player and Referee.

type T_T_rn is ..

type T_Bo_rd is ..

type F_Mot'e is ..

type T_Result is ..

end ,_h,']red_ Tzlpes ;

2.2 Partition

_k partition is a new librarv unit capturing the concept of a virtual node type and whose

instances have the properties required of virtual nodes. One can recognise in the partition a

restricted form of class as found in object oriented languages.

.\ partition declaration defines a type which structurally speaking is similar to a package.

It can be noted that a partition is just like a package in Ada except for certain constraints.

Like a package, it has a specification part and a body. Its specification defines the interface

to the partition instances in terms of subprograms and tasks which are made available for use

by its clients, while its body encapsulates its implementation. A partition may have an active

"thread of control", in which case it contains one or more tasks. Unlike a package no type or

object declarations are allowed in a partition specification to avoid remote memory accesses

and dynamic type checking.

The following is the specification part of the partition "Referee" to represent the referee in

a battleships game.

with 5;hared_Tqpes :

use >hared_Types :

partition Referee is

-- Referee keeps copies of the boards of the t_o players.

-- Each player has to initialise his/her board. Once this is

-- done, Referee provides alternating access to the boards.

-- In this _ay, each player plays a position on his/her

-- opponent's board in turn until the game is over.

-- To know when the game is finished, a unit can call

-- Wait_for_End which _ill not return control until the game
-- is over.

procedure Copy_Board ('(Owner : in T_ Turn ; Board : in T_Board) :

function Plat/ (||'he : f_Turn:.l[oee : T_Move) return T_Result:

procedure _}%it_for_Er_d :

end R¢'/eree ;

.....

file program would not he complete until the body defining the implementation is provid,,d.

l{owevor, as in ._tandard .\da. 1his specification is enough lo allow the definition of partitions
which depend on the referee.

This is followed here by the specification of a player:

= :

w

w

= =w

w

with Referee,

.5'hared_ Types ;

use .>'hated_ Tgpes :

partition Player (.4_Referee : Referee : A_Turn : T_Turn) is

-- Player simulates the behaviour of a player. After having

-- its environment variables set up (through the initialisation

-- parameters), it thinks and plays until the game is over.

end Plaqer ;

The name associated with a partition declaration does not represent, as would be the case

in a package declaration, a single instance of the object with this definition in the library. It is

the name of an access type bound to an anonymous partition type.

The declaration:

with Referee.

Shared_Types ;

use Shared_Types

partition Player (A_Referee Referee A_Tur. • T_Turn) is ...

can be understood to mean:

OR_. I.N,AL PAQE _S

OF POOR QUALITY

vith [?_f,r{e.

"hnr_d_ Tvpes:

use ._hm'ed_ Tvpes:

;;artition type Plaver_Tvpe ¢.l_lbferee : Rcferce :.l_Turn : T_Turnl is ...

-- the declaration of an anonymous package type

"ype Plaver is access Plaver_ [Vl)e :

Partition variables may be declared in the declarative parts of partitions or nodes. Such a

variable is an access variable and is initially null..k partition nstanco is created bv a new

,allocator. as is usual for an object referenced by an access type in .\da.

.l_Pb_y*r : Plaver := new Pl_ye; PARTITION [The_fle/eree , The_ Turn) "

m

v

w

w

Note that the syntax is exactly lhat of the new allocator in .\daS3: however, since the Iype

,,l the constructed obje(:t must be _iven. the attribute PARTITION was introduced to ¢ive the

hidden type of the ptayor objects, l'he brackets following the kevword PARTITION contain the

_Lctual parameters matching the formal parameters defined in the declaration of the partition.
and giving the initial configuration of the system.

This allocator may not be executed by a partition. Partition variab[es in a partition can
receive values only bv assignment from instance variables which are created at the node level.

Preventing the creation of partitions by partitions in this way guarantees that 1he new units

are not misused as units for software development displacing the package concept as the main

modularity feature in a normal Ada program.

.\ programmer is encouraged to use normal .\da style in developing a partition. A partition

,_r its body mav have a context clause "'withing'" one or more normal .\da packages. If these

packages have "'state". then they are replicated with each instance of the partition which "'withs'"

lhem. If these in turn "'with" further packages, then those to() are replicated. The complete

,lependoncy graph of the partition up to but not including any other partitions which may be

"withed". is replicated with each instance. The partition unit with this set of packages on which

it depends is sometimes referred to as the closure of the dependency graph. In fact, the word

partition is overloaded, being used informally to mean the partition closure, the set of all the

units appearing in its dependency graph except other "'withed" partitions while serving also as
the reserved word identi_-ing the interface unit.

In the example, it would be natural to provide a package defining the data structure in which

a player records his knowledge of the opponent's board. Since that board will be examined in

detail when choosing the next move, the package will provide also the algorithm for selecting

the next move. There will, therefore, be a package Boards defined as follows:

with Share&Types ;

use Shared_Types ;

v

w

w

:acKage Boards is

-- This package provides to the player:

-- the definition of his/her board by the user,

-- operations to manage a view of his/her opponent's board.

-- Definition by the user (the player) of his/her ships'

-- arrangement in the player's board.

function User_Definition return T_Bna,'d :

-- Operations based on the player's viee of his/her opponent board.

procedure /nit_Opponent:

procedure Update _Tr_ed_3[ore :in T_More: Result : in T_Result):

function Choose_J[ot,e return T_.l[ot, e :

end Boards ;

package body Board_ is

-- Declaration of the unique non-constant state item appearing

-- in this package.

_pponent_Board • ..

-- Implementation of the services provided by the package.

function ('ser_D_firut_on return /_Board is

m

end Boards"

= =

.ks explained above, this package, being "'withed'" hy the body of the player partition, will

be replicated with each instance of the player, so oath will have his own cop3" of the board data

:.t ructure.

.\ playor is an active partition: it is implemented with a task in its body. I1 has a with

clause for the Boards package, and declares an instance variable lbr _he referee.

_vhh Boards :

partition body Plager (.I_R_:feree : Referee; .I_L_rn : T_Turn) is

The_Referee :Re/eree := A_Referee:

.%[y_Turn : T_Turn := A_Turn :

task Life ;

task body Life is

My_Board :]'_Board:

Next_Move : ?'_Move ;

Result : T_Result ;

begin

-- Initialisation of the two boards (the player's board and

-- the view of the opponent's board).

M__Board := Boards. User_Definttion ;

Boards. [nit_Opponent ;

-- Initialisation of the referee's copy of the player's board.

The_Referee. Copy_Board (Mtj_Turn , My_Board);

-- Life cycle of the player.

= =

ioop

',-_zt_.lIore := Boards. ('hoose_.lIot'e. :
?,_sult :: The_fleferre. Plaq (_lhl_Turn . .Vc.rt_.l[o_'e):
exit when �Result : End_oLGame) :
_oards. l'pdate ;.Vezt_Move . Result) :

end ioop;

end L_f_:

end Plaq_r :

w

In this way. a partition provides r he unit of distribution, aggregating dosely-cooperatin¢ library

units and exporting an interface to the rest of the program, so each partition can be writtml

in familiar _\da style. Finally, we note again that since partitions are units of distribution.

the svstom designer must be conscious that inter-partition communication i,_ potentially muct_

qowor r t_an intra-partition communication.

2.3 Nodes

Nodes are intended to provide the svstem designer or programmer with control over conli_nra-

lion, lho way in which partitions are a[located in the network. Structurally speaking, they ;',r_,

very _imilar to partitions..k node possesses a specification which provides the node interface

and has 1o fulfill the same constraints as a partition specification. It also has a body lhat

implements the services offered by the node. As with the partition, the declaration of a node

introduces an access type name bound to an anonymous type. Node variables can oniv appear

in tile declarative part of a node. Node instances can be created by other nodes through lh_,

execution of the new a[locator. Unlike a partition, a node can create other node instances as

well partition instances. [f this distinction were not made, then a programmer could dewqop a

hierarchy of partitions, violating tile intention of their introduction.

There is a one to one mapping between node instances and executable binary modules.

('ommunication belweon node instances is always via message passing. One node, identified by

;t pra_ma distin.quished, is selected by the programmer as a "'distinguished" node. This node i,,

logically the main program and is createdl elaborated and started bv the operating system all

system initialisation. Others are created and started by other nodes.

In tile design of AdaPT it was felt that, despite their structural similarity to partitions.

the purpose of the node, aggregating elements of a program which will form a single binar,v.

was sufficiently different from that of the partition that it was sensible to introduce it as an

independent concept.

Here. for simplicity, the whole program will be assembled for execution in a single machine.

so there is one node which constructs the complete program.

node A_Single_Main is
pragmadistinguished

ORg_.al_L PAOE tS
OF POOR QUALITY

r .

w

= =

end A_5"ir_qle_Mam "

,vith Rcferee.

[;laqer .

;h,_red_Tqpes :

use Shared_ Tripes :

node body .4_Sinqle_.i[am is

The_Re#tee : Re/eree := new Referee 'PARTITION :
Plumier1 : ?l_ler := new t'l_qer PARTITION (The_Re#tee. Turn1) :

Pl_Pter2 : Plqyer :-_ new fPl_qer 'PARTITION (The_ReJere'e, Turn2) :

begin

-- The__eferee, Playert and Player2 will run concurrently until

-- the end of the game. The node will not terminate until all

-- library-level tasks in the three partitions have terminated.
null:

end , l_,b'ingle_Ma_r_ :

w

File values T_Irnl and l.rndare literals <)f type T_turn.

2.4 Conformant Partitions and Conformant Nodes

In the design of the .\daPT extensions o[:\da, it was felt that the needs of reconfiguration

and error recovery frequently require a switch of mode. in whicl{ a set of operations is replaced

bv others with the same interface, but differently implemented. Thus. what was required was

the ability to define partitions of the same logical type, but differeutly implemented. :\ mo<le

change could then be obtained bv assigning a different value to some instance variable in the

caller. This is a form of polymorphism not available in Adas3. It is provided in :\daPT by a

concept of conformant partitions.

.\ _et of conformant partitions allows different implementations of a partition to present a

common interface (i.e. be of the same type). Tiffs provides a basis for managing mode chan_es

and fault tolerance. _.V+_do not propose to expand on 1his idea here. but the example can

be extended to allow a triode switch, in which the partition representing one of the players

plays the game itself, instead of just providing an interface for a human player. Having defined

a partition type in a partition declaration this can be used as the prototype for one or more

conformant "'peers" with the identical interface specification by writing a declaration such as:

partition Autornatic_PM{ler (A_Referee " Re/eree ; A_Turn • T_Turn)is Player

This states that the external properties of the Automatic_Player are exactly those of the Player.

IIowever, the body might be entirely different. For example:

O_'_:af_L PAC_E lI$
OF POOR QUALITY

r--

L--W

partition body Automatic_Plover (.[_Re#rce Referee" .__Turn " 7"_ Turn) is

-- This player is the computer.

end .t utomaOc_Plaqer

This alternative form of player might be selected at system construction if the human player

wished to play against the computer rather than against another human. The following gives

an outline of the code to construct a single node in this more general case.

with Referee,

Player .

• t utomatzc_Player .

._,'hared_ Tvpe._ •

User_Interface :

use ,qhared_Tvpes :

node body .LSingle_Mam is

The_Referee : R@:r,'r :

.\'o_ltlore_f]ames .

Human_Players : BOOLEAN:

Turn_of_Plover1 : K T_*rn :

Playerl .

Plover2 : Ptaver;

procedure /nit_Game is ..

-- Initialises interactively the values of No_more_game_,

-- Turn_of_Playerl and Human_Players using User_Interface.

procedure The_Other_Tm'n (A_Turn : /'_Turn) return T_Turn is ..

-- From a player's turn, it computes the turn corresponding to

-- the other player.

task LiJe:

task body Life is

begin

loop
[nit_(;arne :

exit when .Vo_more_game_ :

The_Referee := new Referee 'PARTITION :

-- We assume that the fir-_t player is always human,

Playerl := new Plover 'PARTITION (The_Re#tee . Turn_oJ_Playerl) ;

if Human_Plovers then

-- "['he two players are human.

Player2 := new Player 'PARTITION

(The_Referee , The_Other_ Turn (Turn_o.f_Plagerl)) ;

else

-- The second player is the computer.

Player2 := new Automatic_Player 'PARTITION

(The_Referee , The_Other_Turn (Turn_of_Playerl)) ;

end if ;

The_Referee. Wait_for_End ;

end _oop;

end Life ;

end A_Single_Mam ;

w

10

3 Translation of AdaPT to Ada83

.ks most aspects _f our suRgested mappin_ between AdaPT and .\dagx have their roots in
The Transformation of AdaPT into :\da,>3, it is useful To review the key ideas of this latter

!ransMrmation. This section describes how this translation can be formulated for each of the

_\daPT units..\ more detailed discussion of this translation process may be found in the revised

report for task T3 of this project,

3.1 The public: a shared repository of definitions.

Publics present no problem for transformation: they are reptaced by normal .\da packages.

restricted only in that they possess no variable state.

w

w

= =

w

3.2 Partitions

lho partitions and nodes are structures with features similar to Those which package typos might

have if they existed in the language. [he basis of the translation which we have developed into

.\da,'<_ depends crucially on the fact that they are types.

Partitions in AdaPT are t!jpes whose instances can be thought of as abstract state machines

(AS.Ms). They possess persistent state attributes encapsulated within their bodies, while pre-

senting in their interfaces sets of operations which can modify their states, They may be active

or passive. In the first case they have one or more internal tasks which can cause changes or"

state to occur due to the partition's own actions. If the partition is passive, however, its state

changes only as a result of invocation of the subprograms in the interface.

To create a program in Ada83 whose behaviour is equivalent to the effect of an .\daPT

partition we have shown (informally) that for every partition type there is an abstract data

wype (,\DT) whose instances have the equivalent effects to those of the partition instances. The

lull account of the transformation will not be given here. Essentially it implies The collection

of all the state elements of the partition {and all its tasks if it is active) into a state record.

This record is now a data type which is exported as a private access type. Client program units

can declare instances of this type as thev would have declared instances of the partition. The

procedures and functions declared in the partition unit are modified to take an extra parameter

of the access type, which is passed with the data in every call.

In AdaPT a partition unit can "with" other library units. In our translated version of such

a complex partition, these are also translated to abstract data types defining state records. For

each such "withed" package, an instance of that record is declared within the state record of

the partition which has the relevant with clause among its context clauses. Thus the original

ll

_tructure of the partition as a tree I of "'withed" units is preserved in the translation:.

}{ere. for example, is the translation of the complete Plaver partition includin_ the l?oard,>

package which in lhis case forms the whole ot' lhe dependency graph.

with 5hated_ Llpes :

use ,>hared_ T_/pes :

package Boards_ADT is

-- This package provxdes the player _ith an instance of the board type:
-- In this he maintains a record of all he has learned of his

-- opponents' ship arrangement. This package also provides the

-- operation to construct the player's o_n battle arrangement

-- to send to the referee. Also the operations to actually

-- conduct the game by selecting a move and recording the result.

type Board,9 iS private;

-- Definition by the user (the player) of his/her ships'

-- arrangement in the player's board.

procedure ['_er_Defimtwn _B : in out Boards : The_Board out T_Board) :

-- Operations based on the player's view of his/her opponent board.

procedure [mt_O. pl,oner_t :,B : in out Boards) :

procedure (-pdate (B " in out Boards: Tried_Move : in f_.tloee : f_esult : in f_Res,dtl :

procedure C'hoose_Move ,/3 : in out Boards: The_.llove : out F_.l[otw] :
private

type t3onrrt,_ is

record

Opponent_Board : ... -- as defined in the body of Boards.

end record ;

-- This is the state record for board instances.

end Boards_A D T :

There will be additionally a Cre.ate operation if there is an initialisation part in the .\SXI
and a De.stroll operation if there is a task in the state record.

\Ve come now to the translation of the partition unit itself. This exports a private access

lype. and the definition of the state record can be deferred to the body. Since the private lvpe

cannot be instantiated by a client with the new allocator, it is necessary to introduce a C'zvat_

operation to provide for its effect. It is important to note that. even if the access type is not

private, there is a difference between executing a new allocator in the client, and in the body

of a Create operation which is part of the ADT. This concerns the location of the stored record

in a distributed system. In the latter case it is correctly stored on the heap of the unit owning

the operations. For symmetry there is again also a Destroy operation.

with Beferee_A D T ,

'The general form of the dependency graph is an acyclic directed graph. This gives difficulties in the trans-
lation. Such a graph can be modified by a preliminary program transformation to a tree structure. We do not
consider these details here.

2We shall see later, when considering the type extensions supported in Ada9x how this feature can be inter-
preted as inheritance with type extension,

12

w

Chared_ Ti]pe._¢ :

Jse Sharrd_ Tvpes_A D T :

package Player_.lDT is

-- Player simulates the behaviour of a player. After having

-- £ts environment variables set up (through the initialisation

-- parameters), it thinks and plays until the game is over.

type Player is private:

-- Create simulates the operator new for the partition

-- creation and supports the initialisation parameters.

procedure ('reate (P : in out Player;

.t_Referee : in Re#ree_.4DT. t'_e/erFe :

.l_Turn : in T_Tarn):

-- Destroy provides the complementary operation to Create.

procedure Dcstro V (P - in out Player) ;

private

type Player_State :

type Plaver is access Plaver_State :

end PIaver_ADT ;

with H.,Jrds_A D T :

package body PIaver_._DT is

task type Life_Tvpe is

-- An extra entry is added to give this task access

-- to the state of a Player's instance. The entry gill

-- be called by the Create operation.

entry Set_In,tml (P :in Player):

end Life_Type ;

type Player_State is

record

-- An instance of the f3oards_ADT's state,

B : Boards_ADT. Boards:

-- State variables derived from the body of Plaver.

The_Referee : Referee_..IDT. Referee:

31y_Tarn : T_ Turn ;

T : L*fe_Tvpe :

end record ;

-- ,_ote how the state record o£ the player ts nov composed _ith

-- that of the Boards package.

end Player_AD T

The result is a program which is quite well structured in Ada83 terms. ADTs have been

much discussed as Ada structuring features. To write such an ADT directly is quite feasible.

However, the result is not as neat as the AdaPT partition itself, and since ADTs can be written

which are more general than the partition, a programmer must observe some restrictions in

writing it. Nevertheless the use of a complex data type as a partition (or virtual node) in a

distributed system is an option which is available in Ada83 and has been largely overlooked by

workers (including ourselves) who have previously sought appropriate ways of writing virtual

nodes and composing distributable Ada programs.

13

We consider, however, t hat r he construction from first principles of a neatly sl ructured .\ DT

To represent a large partition is not easy, and the direct definition _t" the large data structures

involved may not always seem natural to the programmer. One _otution might be to retain

AdaPT as a methodolo:_y, producing tile translation bv hand or using a pre-procossor. In a

later section we shall see. however, that in .\da9x. _he use of derived types will provide a natural

way to develop partitions for distribution.

n

= =

3.3 Nodes As Configuring Units

.\daPT introduces a separate concept of a node whose destiny is to become tile source code

representation of a binary executable unit to run on a machine in the network..\ node differs

little in its structure from a partition and it too can be converted to an :\DT. In our translation.

however, it is supplied with a main procedure which creates and elaborates the node instance

when it is invoked during system start-up by the operating system by a command from the user

if it is the distinguished node. or bv another node if it is not 3.

=

3.4 Conformant Partitions and Nodes.

Conformance is a type of polymorphism not supported in .\de >3. Objects of lhe same type

are differently implemented. Since an access variable can only be bound to objects of one type.

it. is necessary to use the type conversion facility offered by the generic function UNCIIECKED

CONVERSION to achieve the ,_ffect. It is however possible to do so in a controlled way. hidden

in a procedure body. The technique was explained in the T3 report, and we do not propose to
describe it in detail here.

4 AdaPT and Ada9X

•1.1 Public Units

.ks in the case of :\deS3, publics are presented in Ada9x as packages which having no variable

state. The mapping proposes to introduce a pragma PURE to label a package which has

these properties. It will not change the meaning of the program, but will make possible the

construction of a tool to check that the package has the intended property, and also to check

at compile time that attempts are not made to share packages not so labelled. The public unit
given in section 2.1 will therefore be rendered:

package Shared_Types is
pragma PURE ;

z An account of the work on partition to partition and node to node communications is given in the extended
T3 report

14

-- This public unit provides the types to be shared between the

-- partitions Player and Referee.

type £_Turn is ..

type [_Board is ..

type T_Move is ..

type T_Result is ..

end ,>'har_d_TtllOes :

w

=

u

m

i

4.2 Partitions

file reports of the Ada9x mapping team describe at some length their ideas for developing an

object oriented style of Ada programming by extending the notion of the derived type. There

is little doubt that such features will provide a useful way of developing Tile kind of structures
required for the ADTs that we use as partitions. It is of some interest that those features of a

package which are inherited by a derived type in a descendant are precisely the featurps I the
type and its operations) which lbrm an .\I)T.

.ks noted in rite section on partitions. 1he "'withed'" package associated with a lmrlition

,'losure. which is replicated with each instance of the partition, has an ,q['ect equivalent to type
,,xtension in a derived type.

To keep the account of the Adagx form of the translation as simple as possible, we present

first a purely schematic outline of a partition in which a partition unit C "'withs'" a package B

which itself "withs" a package A. (see figure 2.)

Consider first tile packages on which the partition depends. They consist of the package B
which "'withs" package A:

package .-t is

procedure PA

end ,_:

with ,_ :

package H is

procedure PB

end B:

u

In Ada83 we would construct the ADT corresponding to A and then make the ADT for B

oxporting type lbr the state record for B containing the state variables of B together with an
instance of the type exported by the transformed A.

In Ada9x, the translation can be done (of course) in exactly the same way, since the Ada83

programs will be valid in Ada9x. However, the aggregation of the states can receive language
support by the use of record extension. First we make ADTs corresponding to the separate

packages A and B and then form the aggregated state by type derivation. To make such

extension legal, the type to be extended must be declared to be a "tagged" type.

u

15

w

w

w

w

m

with B

partition C

t
with A

package B

package A

Figure 2: Schematic of the partition with its dependency graph.

package A_ADT is
type .{_,_tate is ,,
procedure P.I (_:1 :in out .{_State)

end A_.t I)T ;

package B_.iDT is

type B_State is tagged private:
procedure PB (VB : in out B_State)

private
type B_,_tate is...

end []_A D T :

with A__IDT
B_..tDT :

use .4_A D T,

B_.tDT ;

package FulI_B_.4DT is

type FulLB_State is new B_State with private;
procedure PB (VB : in out Full_B_State) ;

private
type FulLB_State is new B_State with

record

VA : A_State ;
end record ;

-- This defines a state composed by B_State and A_State,
end B_ADT ;

M

Note that it is the type exported by package B which is inherited and extended; package A

16

D

w

m

==

w

provides a state type which is compounded into the derived type. The operations such as P.\.

,,xported by package A are not available as operations callable by users of the derived lype:

however, nor were the operations exported by the package .\ available to users of B when B wa_

a package. In both cases _hese operations were accessible for calling from The bodies definino_:

the operations in the interface.

Next we must fl)rm the partition. Here the process is exactly the same. except _hat _he

partition exports an access type to provide the type representing the partition. The partition

C is first converted to an ADT on its own. and then the full partition is created by inheritin_ _,'

and extending its type by" aggregating its state with an instance of B. _ should note, however.

1hat the procedures created in the partition have variables of the state record type as arguments.

It is a feature of the new Ada that these can be called with actual parameters of access type,

provided they are given the the new mode access in the formal part.

package C_ADT is

type ('State is tagged private:

procedure PC' (V(' in _'_.ctrLtei :

private

type (L.State is...

end (L.tDT ;

with B_ADT,
C_._DT :

use B_A D T ,

r_ADT :

package FulLC_ADT is

type FulkC_State is new (LEtate with private;

type FulLC_Ptr is access Full_C_State ;

procedure PC' (VC : in Full_C_State) ;

procedure Create (VC : in out Full_C_Ptr) ;

procedure Destroy (i"C : in out Full_CPtr) ;

private

type Full_C_Statc is new C_State with
record

t'B : F.II_B_SIaIe :

end record :

end FulLC_.tDT :

5 The Player Partition in Ada9x

We can now turn to the translation of the elements of the game, particularly the partition

Player with its "withed" package Bow_s.

The first is the partition unit itself. The interface is converted to an ADT as follows:

P :
with Referee_A D T,

Shared_T_lpes ;

use Shared_Types_ADT ;

17

package Player_.tDT is

-- Player simulates the behaviour of a player. After having

-- its environment variables set up (through the initialisation

-- parameters), it thinks and plays until the game is over.

type Player_state is private:

-- Create simulates the operator new for the partition

-- creation and supports the initialisation parameters.

-- must abort the task instance as well as free storage.

procedure (";'6ate

(P :in out Pla,jer:

_t_Referee : in R_fer_e_ADT. Re/eree :

.__Turn : in /'_Turn/:

-- Destroy provides the complementary operation to Create.

procedure Destro 9 (P : in out Plaqer) :

private

task type Lifi_Tqpe is

-- An extra entry is added to give this task access

-- to the state of a Player's instance. The entry will

-- be called by the Create operation.

entry Set_Initial ('P :in Plmter)'.

end L_/e_ ['qpe :

type Plmler_,'State is
record

-- State variables derived from the body of the Plmler partztion.

The_Btferee : Refcree_ADT. Re/eree :

Mq_Turn : T_Tm'n ;

T : L_f__T,lpe :

end record ;

end Plaqer_.4DT :

w

w

The task body and the bodies of the operations Create and Destroy cannot be given y,,t.

as they depend on the package Boards, whose operations they use. Thus next we provide the

translation into an ADT of the package Boards. This ADT provides state and operations which

will be used bv the Player in o×ecuting its "'life'" task, so the package Boards_.tDT must be

compiled before the definition of the player body.

with .Shared_ T_tpes ;

use Shared_Types :

package Boards_ADT is

-- This package provides the player _ith an instance of the board type:

-- In this he maintains a record of all he has learned of his

-- opponents' ship arrangement,. This package also provides the

-- operation to construct the player's own battle arrangement

-- to send to the referee. Also the operations to actually conduct

-- the game by selecting a move and recording the result.

type Boards is private;

-- Definition by the user (the player) of his/her ships'

-- arrangement in the player's board,

procedure User_Definition (B : in out Boards ; The_Board : out T_Board) ;

-- Operations based on the player's view of his/her opponent board.

procedure [nit_Opponent ('B : in out Boards) ;

18

w

w

w

procedure Update ,_B : in out Boards: Tried_Move : in T_3[ove : Re¢,dt in _R¢sutt):

procedure ('hoose_3loee (B : in out Boards : The_Move out T_.Uoee l :

private

type Boards is

record

Opponent_Board : -- as defined in the body of the AdaPT package t],),ud_.
end record :

-- This is the state record for board instances.

end Bo¢Lrds_A D T :

It _hould be noted that the Boards type exported bv t3oards_ADT is a normal type and nor ;_n

access type. The hatter is onlv necessary to provide the effect of a partition, with its (tvnamic

creation and capability of run-time switching. The access type references The a_gregated state

records as is shown in the package Fdl_Player_.,|DT below.

The extended player partition which represents the full partition with its associated package

Boards is now uivon: it inherits its parent Plmjer_.tDT and enriches its state with 1he state ,_f
i h,' Bo_,'ds_A D T.

,'_ith t?,/_ree_.tDT. Plqqer_.lDT. l?oards_tl)T.

>hated_ Tqpe_ :

use l¢_/eree_:[D T. PIq_ler_. t D T, B,m,'d.__.i D T

"hated_ Tqpes :

package Full_Platter_tDT is

-- Player simulates the behaviour of a player. After having

-- its environment variables set up (through the initiaIisation

-- parameters), it thinks and plays until the game is over.

type F, dLPlazler_State is new Plaqer_state with private;

type Plaz]er is access F.IiPlayer_dtate with private;

-- Create simulates the operator new for the partition

-- creation and supports the initialisation parameters.

procedure Create

(P : in out PIm/er;

.t_Referee : in Re#ree_AOT. Referee:

.l_Turn :in T_Turn);

-- Destroy provides the complementary operation to Create.

procedure De._tro_ (P : in out Plaqer] ;

private

type FulLPla_ler_5tate is new Player_State with
record

-- Aggregates State variables of Player _ith those of Board.

B : Boards_ADT.Boards ;

end record :

end Player_ADT ;

Finally, the bodies of the packages Player_ADT and FuILPlayer_ADT can be given. The

task which defines the life makes reference to the Boards data structures which now form part

of the FuILPlayer_4DT, which they can access in the state record. To make that possible it is

necessary to pass a reference to that state record to the task at the Create time. Provision for

this was made by providing a suitable entry in the task type Life_type.

19

with B,_ards_ADT :

package body F,dl_Plaqer_ADT is

task body L_fe_tqpe is
_,[e : Pla_ter :

begin
accept bct-lnttial(P: Pl_er) do

.tie := P :
end

,..eLc.-- illustrates how the task can access the state record

end i_/e_tqpe :

end Full_Plaqer_ADT :

= =
w

= =

\Ve should acid that we do not necessarily consider that this structure is "good" .kda9x..\

programmer forming an Ada9x program component with these properties directly would arrivo
at oxactlv this structure.

5.1 Polymorphic types and conformant partitions

In section 4.2 we drew attention to the difficulty of constructing conformant partitions in

.\da,b3 in view of the strong typing rules of the language. Ada9x supports a controlled do_ree

_,f polyn_orphism, which can be utilised to make provision for conformance. First we continue

lhe schematic forms used in the previous section to describe a prototypical partition B and a

contormant partition CB. In AdaPT these would be specified:

partition B is
procedure PB ;

end B:

partition ('/_ is B ;

w

In the following we present a possible Ada9x program for the same purpose, l[owevm'. _,)
provide)he polymorphic type, it is necessary first to define an empty (fully abstract) tagged

type, and derive two different implementations from it. The following is a possible outline.

First we have a fully abstract definition of a type Empt.{l_State with an operation over it. PB.

There is no body to this package, since neither object is further defined. The package exports an
access type for referencing instances of the tagged state record. Since this is defined to be a class

pointer, it is permitted to reference all descendents of Empty_State in the derivation hierarchy.

Tagged types carry a "tag" which permits run-time recognition of the current variant 4.

Note: we have remarked in reports on the Ada83 translation that the AdaPT conformant partition has a

problem that the overheads of providing for possible conformance is carried by all types, because there is no

_yntactic recognition of types which may have conformant peers. Limiting the polymorphism to tagged types

avoids this difficulty in Ada9x.

w 2O

L_

w

w

==

package Abstract_B is

type Empty_State is tagged
record

null:

end record ;

-- the type exported is to be polymorphic to reference items

-- of the type and any derived type.

type (Tass_Ptr is access Emptq_State'('[.ASS:

procedure PlY {_'B : access Empty_btate) is <>;
end Abstract_B ;

This is followed by two ahernative packages, inheriting the same tagged type and extendin_ i_
in each of two different ways.

with ._bstract_B ;

package B_ADT is

type B_State is new Abstract_B. Empty_State with private:

type B_Ptr is access B_State;

procedure PlY (|,'lY : access H_State) :

function (','eate return B_Ptr ;

procedure Destroy (|,-lY : in out B_Ptr) :

private

type B_St(de is new Abstract_B. Empty_Etate with
record

-- State required by the implementation of B.
end record

end B_A D T :

with .4 bstract_B

package CB_ADT is

type CB_State is new Abstract_B. Empty_State with private;

type ('B_Ptr is access CB_State;

procedure PB (VB : access CB_State) ;
function Create return ('B_Ptr :

procedure Destroy (I'B :inout CB_Ptr) ;

private

type ('lY_b'tate is new Abstract_B. Emptg_State with
record

-- State required by the implementation of t?[3.

end record ;

end CB_.4DT ;

v

The following Is a fragment of code showing how this type would be used by a client.

VB : Abstract_B. Class_Ptr :

begin

VB := B_ADT. Create;

Abstract_B.PB (VB) ; -- A call to B_ADT.PB.

VB := CB_ADT. Create :

Abstract_B.PB (VB) ; -- A call to CB_ADT.PB.

end ;

21

= =

== =

w

w

Though rather verbose, we find this solution quite pleasing 5.

\Ve now present the case of the conformant players introduced oarlier in tile same style:

package Abstract_Player is

-- This is an abstract definition of Player's interface that

-- defines a tLniversal type representing the partition and

-- the abstract operations which cannot be called and do not

-- require a bodies.

type Umv_Player is tagged

record

null;

end record ;

type Class_Player_Ptr is access Player'CLASS:

end .4bstract_Player ;

vith Referee_A D T .

._h a red_ Types .

• I bstract_Player :

use _hared_Types ;

package Player_tmpl is

-- Full definition of Player's interface.

type Player is new Abstract_Platter. f "air_Player with private:

type Player_Ptr is access Pla_ter ;
function Create

(A_Referee : Heferee_ADT.Re]eree ;

A_Turn : T_Turn) return Player_Ptr :

procedure Destroy (P : in out Player_Ptr) ;
private

type Player is new Abstract_Player. f:niv_Player with
record

-- Declaration of state corresponding to this particular

-- implementation of a partition Player.

end record ;

end Player_Impl :

w

w

with Beferee_ADT,

Shared_ Types ,

Abstract_Player ;

use Shared_Types ;

package Auto_Player_Impl is

-- Full definition of Player's interface.

type Auto_Player is new Abstract_Player. Univ_Player with private;

type Auto.Player_Ptr is access Auto_Player ;
function Create

(A_ReJe_ee : BeJeree_ADT.Referee ;

A_Turn : T_Turn) return Auto_Player_Ptr ;

procedure Destroy (P : in out Auto_Player_Ptr) ;

SWe would like to acknowledge the help of Offer Pazy of mapping team, in checking that this solution is

indeed along the right lines

22

private

:ype Auto_Player is new Abstract_Player, Umt,_Player with

record

-- Declaration of state corresponding to this particular

-- implementation of a partition Player.

end record :

end ._ut0_Player_[mpl :

%o

L .

_=

L =

.\nd in the creating node. the following code could be found:

.i_Player : .lb_tract_Ptayer. Class_Player_Ptr :

begin

.t_Player := Player_lmpl. Create (.t_referee. .LTurn) :

-- the current player refers to a human player.

t_Player := .-tuto_Player_[mpl. Create{ (.t_re/eree . .h Turn) :

-- the current player refers to an automatic player.
÷rid

5.2 The node in Ada9x

IIaving constructed types whose instances constitute tile virtual nodes of a distributat_le pro-

gram in Ada9x 6. they can now be assembled into one or more "'supertypes" whose instances

lbrm the nodes of the program. Here is the outline of the type which encompasses all three

units, as did the example of the AdaPT node above.

The treatment is exactly like that of the partition: the node is presented as an ADT

oxporting an access type. and whose state is a record containing instance variables for each of

_he component partitions. These are instantiated by the create operation of the node. calling
,'he respective create operations of the partitions. Destroy works in a similar wav.

package Nodal_4 D T is

type Nodal is private;

procedure Create ('M : in out Nodel) ;

procedure Destroy _.II : in out Nodal) ;

private

type State ;

type Nodal is access State ;

end Nodel..ADT ;

=

w

v

with Referee_ADT,
Player_A D T,

ewe should emphasise again that this is a program to implement the AdaPT concepts in Ada9x. It is not

necessarily the way in which the same problem would be solved in the current mapping.

23

V

= :
w

__=

v

•tdaPT_ T_Ipes .

"bared_ Tqpes ,
(-NCHECAED_DEA L L OCA TION :

use 5hared_Y_pes ;
package body Node l_A O T is

type State is
recorQ

The_Referee : R_feree_4DT. Referee;

Playlet1 ,

Player2 : Plnyer_AOT. Player;
end record :

procedure Create (),[in out .Vodel) is

begin
M := new State ;

Re[eree_.tD T. Cry-ate (M. The_Referee) ;
Plaqer_A D T. Create (.l[. Playerl , M. The.Referee , Turn 1) :
Player_ADT. Create (M. Player2 , M. The.Referee , Turn2) ;

exception
when others =>raise AdaPT_Tgpes.NODE_ERROR:

end (Yeate :

procedure Destroy t._[:in out .Vodel) is
procedure Free is new UNCHECEED_DEALLOCAT[ON

,5"rate . .Vode l) :
begin

Referee_.lDT. D_._troy ('.1/. The_Referee) :

Pla_ler_ADT. Destroq (M.Playerl} ;

l)laqer_ADT.Oestro!l (.If.Player2) ;

end Destroq ;

end Nodet_A DT :

.ks we saw before, the difference between a partition and a node lies in the presence or

absence of a main procedure, The following is the main procedure required to make this node
oxecutable.

with .\',)de 1_.{ D T :

procedure Mare is
.In_Instance : .Vodel_lDT..Vodel ;

begin

.\'ode1_4 D T. Create (.-In_Instance) ;
end Main ;

After creating the instance of the state record, the procedure becomes completed, but does

not return until all active partitions generated by the creation are terminated.

6 Forming a Distributed System

Within an applieatiom a node is to become the code from which a binary load module can be

generated for allocation to a particular machine. To conform with Ada's requirements, it must

24

have the form of a procedure, When there are several nodes. 1o become binaries for allocation

on different mac}fines in a network, the transformation into Ada introduces tile following new

problems:

• identifier.

• node creation.

• remote communication.

6.1 System-wide Identifier

In AdaPT, partitions and nodes define access types. To call an operation exported bv a

partition or a node instance the caller must use a reference to the instance.

R : Referee := new Referee 'PARTITION:

begin

R. Copy_Board (A_P/a,jer..t_Board) :

end ;

w

Vntil now, in the transformation of partitions and nodes into Ada 9X (as well as into Ada;q3).

this reference has been implemented using an Ada access type.

with Shared_Types;

use .Shared_Types;

package Referee_A D T is

Re#ree is private;

procedure Copy_Board (Owner " in 7-_ Turn " Board " in T_Board):

private

type Referee_State ;

type Referee is access Referee_State ;

end Referee_ADT ;

:ks partition and node instances may be located for execution on different nodes of a network.

the use of an Ada access type to refer to these partition or node instances is insufficient. In a

networking environment, an Ada access object only makes sense if it is related to the machine

whose storage space it addresses. Therefore, in the transformation of partitions and nodes into

Ada 9X, the ADT's type must be extended adding a node identifier (i.e. program and machine

identifiers).

25

with Shared_F_pes ;

.blaPT_Tvpes :

use Shared_Tripes:

package Referee_ADT is
Referee_Ptr is private:

type Referee is
record

.Vode_ID : .htaPT_Tqpes. T_.\ode_lD :

Reference : Referee_Ptr :
end record ;

procedure Cop_l_Board (Owner in T_Turn Board • in T_Board):

procedure Create (R • in out Referee)

procedure Destroy (R " in out Referee)

private

type Referee_State
type Referee_Ptr is access Re#ree_State

end Referee_ADT :

= =

For the declaration ot" .\'ode_lD. a new type T_.\'ode_ID is specified in

•tdaP T_ Types.

package AdaPT_ Types is

type T_NodeJD is
record

Process_ID ,
Host_lD : NATURAL :

end record ;

-- AdaPT's predefined exceptions.

.qite_Error, -- Node name does not exist.

,Vode_Inaccesszble, -- Node is not available.

Node_Error. -- Node elaboration cannot be completed.

Partition_Error , -- Partition elaboration cannot be completed.

Remote_Call_Error, -- Error during timed REC.
-- Other communication errors.

Cornmun,cation_Failure : exception;

end AdaPT_Types;

The component Node_ID of Referee can be initialised at creation time (e.g. by calling the

UNIX services to get a process identifier and a host identifier). Once a Referee's instance has

been created, Node_ID and Reference provide a "system-wide identifier" for the instance.

System-wide identifiers are necessary for nodes instances as well as for partition instances

because both can be remotely referenced.

We note that after this modification the type Referee is no longer a private type. This

allows the comparison of the Node_ID of different nodes or partitions to determine whether a

call is remote or local.

26

= =

m

if Sd/.Node_ID = R.Node_lD then
-- Local call to R.

R.Copy_Board (Self, 3[g_Board) ;
else

-- Remote call to R.
end if :

In principle, the non-privacy of Referee in Referee_4DT's specification should not lead to

any misuse because all this code should be produced by an automatic transformation toot.

In the case of conformant partitions, the transformation into Ada83 defines a common type

(e.g. Vniversal_Referee.Partition) for the instantiation of any conformant partition. This type

specifies an identifier of the kind of partition inside the conformance set (i.e. Selector) and a
reference to the partition instance itself (i.e. Reference). In a distributed onvironment, this

reference must be converted into a system-wide identifier by adding a new component Node_lD.

package [n_ver,_aLRe/eree is

type Part,tion :

type f_Reference is access Partztion;

type Partition is
record

Selector : .VATURAL ;
.Vode_lD : .tdaPT_ Types. T_Node_ID :

Reference : T_Reference:

-- The type used for the declaration of Reference

-- could be any dummy access type.
end record ;

('ndefined_Selector : czceptzon ;

end Universal_Buffer :

=. -=

6.2 Node Creation

AdaPT differentiates two kinds of nodes, distinguished and non-distinguished. In any AdaPT's

system, the designer must define a distinguished node which will be the starting point for the

system's elaboration. This node is started by the operating system when a user runs the system.

To get the same effect in Ada 9X, we need to declare a proeedure as a main program for the
distinguished node.

with Nodel_ADT :

procedure Main_Nodel is

NI : .Vodel._ADT.Nodel ;
begin

Nodel_4DT. Create (N1) ;
end Main_Node1 ;

27

The non-distinguished nodes are nodes remotdv created by other system's nodes. In 1he

creation statement tile location for the new node (:an be specified (bv default it is *he current

machine). A nonexistent location must raise predefined AdaPT exception SITE_ERROR. The

creator node has to wait until the creation is finished (i.e when a reference to the created node

is returned}. In our example, .Vodel creates ,Vodeg.

/2 : .Vode_2 :-- new .Vode2'NODE (A_.Vetwork_Locat,on) (B)

In a sense the creation of a node instance can be understood as a function call which returns

a reference to the node instance created. Therefore. we could use an Ada function to implement

'he main program for .Vode2..\ simplified version of such function is shown below.

w
with ,Vode2_:t DT .

I_ uffe r_A D T ,

._daPT_Tqpes :

function Ma,n_,Vode2 _R : Re[eree_AOT. Ref_ree) return .V, ule2_.lDT..\',de2 is

.V2 : .Vode2_.lDT..\'ode2 :

begin

.Vode2_tDT. Create (N2. R) :

return .V2 ;

end .'ffam_,Vode2 ;

w

In principle, this solution should work. ,ks .V2 contains a task instance, even if the main

function finishes and returns the reference, the program would run until that task terminates. In

practice, to make the programs portable, a more complex solution is required due to constraints

imposed by UNIX (e.g. a command cannot return a result until its execution is finished), by

.\da compilers (e.g. full support of functions as main programs) and by the possible raisin_ of

an exception that must be propagated over the network.

with Node2_A D T,

Re/eree_A O T ,

AdaP T_ Types ,

use AdaPT_ l_ypes ;

procedure Mare_Node2 is

procedure Get_Arguments (Creator_ID : out Node_ID ; R : out Referee_ADT.Referee) is

-- It gets from the command line Creator_ID and R.

procedure Return_Reference (To : in Node_lD; Re/ : in Node2_4DT.Nodei) is

-- Sends the reference to the node spec£fied.

procedure Return_Node_Error (To : in Node_lD) ;

-- Sends the exception NODE_ERROR to the node specified.

Creator_lD : Node_IO ;

The_Referee : Referee_4 D T.Referee ;

N2 : Nodei_ADT.,Vode2 :

= =

28

begin

Gct_.trqurnent._ (Creator_lD . The_Rc[eree) :

.\'odel_-tDT. F'reatc (,V2. The_Referee) :
Return_Re/crence (Creator_ID . .VJ) :

exception
when NODE_ERROR => Return_.Vode_Error f ('rcator_lD) ;

end .llam_.Vode2 :

w

w

A similar procedure must be defined for every non-distinguished node in the system.

As for the creator node le.g..Vodel), tile creation of a non-distinguished node in .\de !)X

invoh, es the following steps:

• to check whether the location specified is correct, raising the exception SITE_ERROR in
_he last case.

• To fetch the code corresponding To the .\da program generated from the definition in

._taPT ,ff the node {e.g..llain_.\od_2 from .\',Meal).

• _o copy and to start this code on the specified network node

(i.e.. t_.V_tu'ork_Location).

• to wait for the result of the creation (i.e the reference to the node instance created or an

exception).

.\ new package AdaPT_System can be defined to provide these services.

= =

w

with .-tdaP T_ Types ,
\oriel_4 D T .

R¢ feree_A D T .

use ..ldaPT_ Types :
package ._daPT_S_Istem is

-- T_Locat|on is an enumerate type that lists the names

-- of the network nodes availables in the system.
type T_Locat_on is..

function Get_Node_ID return T_Node_ID ;
function Create_,Vode2

(Creator_ID : in T_Node_ID ;
Location : in T_Location;

R :in Re/eree_ADT.ReJeree) return Nodel_4DT.Nodel;
-- It creates an instance of Node2 on the location

-- specified returning a reference to the instance. It

-- may raise the following exceptions:
-- SITE_ERROR when the location doesn't exist,

-- NODE_ERROR when an elaboration error occurs during
-- the node creation,

-- COMMUNICATION_ERROR when there is a network

-- communication error.

29

end ..tdaPT_Svstem "

,i,,,,.,+

.ldaPLSystem couht provide a creation function for everv non-distinguished node type

_tetined in the system. We note that T_Location is declared here instead of in AdaPT_Types

because it requires information about the specific AdaPT's system under transformation.

In its Create procedure, .\ode1 will call .-tdaPT_Systera.Create_.\-ode2 for the remote creation

of a .\'odel's instance.

with UNCHECKED_DEA LLOC.t TION

AdaPT_System :

package body Nodel_ADT is

procedure Create (.Vl :in out Node1 is

begin

_VI..\-ode_lD := .ldaPT_S_lstem.¢;et_.Vode_lD :

.\1.Reference := new .Vade l_,5"t,tte ;

-- Local creation of a Referee's instance.

l?eferee_.t D T. (-'reate (.Vt. Reference. B) :

-- Local creation of a Plczrjer'sinstance passing a
-- Referee's reference.

FulLPlayer_A D T. Create (.Vl. Reference.P . .VI. Reference. R) ;
-- Remote creation of a Nodel's instance on
-- A_Network_LocatJon.

.Vl. Reference. N2 : = .tdaPT_System. Create_Node2

(N I . Node-ID . .-h.Ve twork_Loeatzon . .V1. Re [erence.12)
exception

when others =>raise AdaPT_Tqpes.NODE_ERROR
end Create ;

w

end .Vode 1_.1D T "

6.3 Remote Communication

In itself the implementation of remote communication for Ada programs is not a new topic.

The issues associated with remote procedure calls (RPC) and remote entry calls (REC) have

been already widely studied in many projects. In our translation of AdaPT into Ada 9X, we

have simply reused the main ideas of [DIADEM] which defines a "source-level" approach r that

suits very well the transformation strategy followed until now. In this approach, a distinction is

established between a transport layer which provides a standard communication interface and

a remote rendezvous layer which builds the RPC and REC on top of the transport layer s. For

rThe code for supporting the remote communication is introduced by a transformation tool.

8 Roughly speaking, the rendezvous layer corresponds to the ISO's session and presentation layers.

30

W

= =

a more complete discussion of remote communication in translated AdaPT programs, please
refer to the extended R3 report.

6.4 Distribution

In _he battleships example, tile three partitions xwre composed into a single program by con-

>tructing a node with instances of each, and calling the appropriate procedures re interconnect

them. This node will then be used to generate an executable binary.

It is equally possible to construct a distributed program by forming two or more nodes,

and configuring the partitions appropriately between them. These then form a collection of

oxecutables for execution of different nodes in the network. Details of the way in which such

node images are allocated to machines can be found in the papers on AdaPT. while details of

lhe communications mechanisms were discussed in detail in report R3.

7 Conclusions

The solution proposed here, based on a natural translation of the :\daPT concepts into Ada!)x,

does not match the approach proposed by tile mapping team for distribution. -Fheir solution

has packages, called Remote Communication Interface (RCI) Packages which roughly serve in

the role of our partitions. These are static units, and non-replicatable. Our use of data types

as partition types is more dynamic, but may be less secure, being heavily dependent on the use
of access variables.

We believe that our scheme of transforming AdaPT to Ada9x using ADTs shows that

the use of data types as partitions, permitting inheritance to play a major rote in designing

distributed applications, makes a natural synthesis of these important parts of the language .

.\t the present time, we feel that the elegance of making a coherent integration of the language
in respect of tile Object Oriented aspects, with derived types, and the distribution aspects is

vorv attractive, and think it deserves careful consideration before the language is frozen with

_he version presently proposed. We therefore suggest that further careful study is justified to

decide how the distribution aspects can best be married with the data typing.

In a later report we expect to make a critical comparison of the two styles, and make our
recommendations.

31

