118 research outputs found

    Reliability of AC thick-film electroluminescent lamps

    No full text
    The reliability of AC thick-film EL devices has been studied. The AC thickfilm EL devices were fabricated by Novatech Inc. using the industrial print screen technology. The analysis of reasons for failure has been proposed. The dependence of EL lamp parameters on physical properties of the device EL layers was found. Our analysis of the breakdown spot showed that improvement of reliability can be reached using the additional dielectric layer between the phosphor layer and transparent electrode, high concentration of phosphor powder 70 % and binder 30 %, balanced resistance between the electric circuit and EL lamp. The thickness of the phosphor layer was equal to H = (1 + √3/2)D (hexagonal packing), where D is the mean diameter of phosphor particles. The reliability dependence of EL lamp on a water adsorption property of packaging material was revealed

    Mesoscopic mechanism of the domain wall interaction with elastic defects in ferroelectrics

    Full text link
    The role of elastic defects on the kinetics of 180-degree uncharged ferroelectric domain wall motion is explored using continuum time-dependent LGD equation with elastic dipole coupling. In one dimensional case, ripples, steps and oscillations of the domain wall velocity appear due to the wall-defect interactions. While the defects do not affect the limiting-wall velocity vs. field dependence, they result in the minimal threshold field required to activate the wall motions. The analytical expressions for the threshold field are derived and the latter is shown to be much smaller than the thermodynamic coercive field. The threshold field is linearly proportional to the concentration of defects and non-monotonically depends on the average distance between them. The obtained results provide the insight into the mesoscopic mechanism of the domain wall pinning by elastic defects in ferroelectrics.Comment: 18 pages, 6 figures, 1 appendi

    Finite size and intrinsic field effect on the polar-active properties of the ferroelectric-semiconductor heterostructures

    Full text link
    Using Landau-Ginzburg-Devonshire approach we calculated the equilibrium distributions of electric field, polarization and space charge in the ferroelectric-semiconductor heterostructures containing proper or incipient ferroelectric thin films. The role of the polarization gradient and intrinsic surface energy, interface dipoles and free charges on polarization dynamics are specifically explored. The intrinsic field effects, which originated at the ferroelectric-semiconductor interface, lead to the surface band bending and result into the formation of depletion space-charge layer near the semiconductor surface. During the local polarization reversal (caused by the inhomogeneous electric field induced by the nanosized tip of the Scanning Probe Microscope (SPM) probe) the thickness and charge of the interface layer drastically changes, it particular the sign of the screening carriers is determined by the polarization direction. Obtained analytical solutions could be extended to analyze polarization-mediated electronic transport.Comment: 35 pages, 12 figures, 1 table, 2 appendices, to be submitted to Phys. Rev.

    Domain wall conduction in multiaxial ferroelectrics

    Full text link
    The conductance of domain wall structures consisting of either stripes or cylindrical domains in multi-axial ferroelectric-semiconductors is analyzed. The effects of the domain size, wall tilt and curvature, on charge accumulation, are analyzed using the Landau-Ginsburg Devonshire (LGD) theory for polarization combined with Poisson equation for charge distributions. Both the classical ferroelectric parameters including expansion coefficients in 2-4-6 Landau potential and gradient terms, as well as flexoelectric coupling, inhomogeneous elastic strains and electrostriction are included in the present analysis. Spatial distributions of the ionized donors, free electrons and holes were found self-consistently using the effective mass approximation for the respective densities of states. The proximity and size effect of the electron and donor accumulation/depletion by thin stripe domains and cylindrical nanodomains are revealed. In contrast to thick domain stripes and thicker cylindrical domains, in which the carrier accumulation (and so the static conductivity) sharply increases at the domain walls only, small nanodomains of radius less then 5-10 correlation length appeared conducting across entire cross-section. Implications of such conductive nanosized channels may be promising for nanoelectronics.Comment: 39 pages, 11 figures, 3 tables, 4 appendice

    Thermodynamics of nanodomain formation and breakdown in Scanning Probe Microscopy: Landau-Ginzburg-Devonshire approach

    Full text link
    Thermodynamics of tip-induced nanodomain formation in scanning probe microscopy of ferroelectric films and crystals is studied using the Landau-Ginzburg-Devonshire phenomenological approach. The local redistribution of polarization induced by the biased probe apex is analyzed including the effects of polarization gradients, field dependence of dielectric properties, intrinsic domain wall width, and film thickness. The polarization distribution inside subcritical nucleus of the domain preceding the nucleation event is very smooth and localized below the probe, and the electrostatic field distribution is dominated by the tip. In contrast, polarization distribution inside the stable domain is rectangular-like, and the associated electrostatic fields clearly illustrate the presence of tip-induced and depolarization field components. The calculated coercive biases of domain formation are in a good agreement with available experimental results for typical ferroelectric materials. The microscopic origin of the observed domain tip elongation in the region where the probe electric field is much smaller than the intrinsic coercive field is the positive depolarization field in front of the moving counter domain wall. For infinitely thin domain walls local domain breakdown through the sample depth appears. The results obtained here are complementary to the Landauer-Molotskii energetic approach.Comment: 35 pages, 8 figures, suplementary attached, to be submitted to Phys. Rev.

    Static conductivity of charged domain wall in uniaxial ferroelectric-semiconductors

    Full text link
    Using Landau-Ginzburg-Devonshire theory we calculated numerically the static conductivity of both inclined and counter domain walls in the uniaxial ferroelectrics-semiconductors of n-type. We used the effective mass approximation for the electron and holes density of states, which is valid at arbitrary distance from the domain wall. Due to the electrons accumulation, the static conductivity drastically increases at the inclined head-to-head wall by 1 order of magnitude for small incline angles theta pi/40 by up 3 orders of magnitude for the counter domain wall (theta=pi/2). Two separate regions of the space charge accumulation exist across an inclined tail-to-tail wall: the thin region in the immediate vicinity of the wall with accumulated mobile holes and the much wider region with ionized donors. The conductivity across the tail-to-tail wall is at least an order of magnitude smaller than the one of the head-to-head wall due to the low mobility of holes, which are improper carries. The results are in qualitative agreement with recent experimental data for LiNbO3 doped with MgO.Comment: 20 pages, 6 figures, 1 appendi

    Institute of Semiconductor Physics, National Academy of Sciences of Ukraine Semiconductor Physics, Quantum Electronics & Optoelectronics. 1999. V. 2, N 2. P. 78-83

    Get PDF
    Abstract. The polycrystalline SmS films were fabricated by MOCVD technique using a number of ditiocarbamates, synthesized by different techniques. The growth kinetics and temperature dependencies of the film growth rate are investigated, which allowed us to determine the activation energies and the reaction type. The investigations of the structure and surface morphology of films were carried out. The technological conditions are determined providing the fabrication of single-phase SmS films of cubic modification with the most ordered crystal structure

    Forest legislation of Peter the great: traditions and innovations

    Get PDF
    Summing up the overall result of Peter's activities in the field of forest legislation and forest protection, we quote the words of V.V. Chernykh: "Despite the complexity and inconsistency of regulatory legal acts, Peter's law-making played an important role in the development of forest protection legislation. Some of them were included in the Forest Charter of the Empire, adopted in 1802, and in other regulatory legal documents that operated on the territory of the Russian state
    corecore