5,890 research outputs found

    Residual resistivity ratio and its relation to the positive magnetoresistance behavior in natural multilayer LaMn2Ge2; relevance to artificial multilayer physics

    Full text link
    Results of low temperature magnetoresistance (Δρ/ρ\Delta\rho/\rho) and isothermal magnetization (M) measurements on polycrystalline ferromagnetic (T_C close to 300 K) natural multilayers, LaMn_{2+x}Ge_{2-y}Si_y, are reported. It is found that the samples with large residual resistivity ratio, ρ(300K)/ρ(4.2K)\rho(300K)/\rho(4.2K), exhibit large positive magnetoresistance at high magnetic fields. The Kohler's rule is not obeyed in these alloys. In addition, at 4.5 K, there is a tendency towards linear variation of Δρ/ρ\Delta\rho/\rho with magnetic field with increasing ρ(300K)/ρ(4.2K\rho(300K)/\rho(4.2K); however, the field dependence of Δρ/ρ\Delta\rho/\rho does not track that of M, thereby suggesting that the magnetoresistance originates from non-magnetic layers. It is interesting that these experimental findings on bulk polycrystals are qualitatively similar to what is seen in artificially grown multilayer systems recently.Comment: 5 pages, 3 figures, separate figures. This work is a follow-up of our earlier paper in APL, Ref. : APL Vol 71, pp 2385 (1997

    Magnetic anisotropy, first-order-like metamagnetic transitions and large negative magnetoresistance in the single crystal of Gd2_{2}PdSi3_3

    Get PDF
    Electrical resistivity (ρ\rho), magnetoresistance (MR), magnetization, thermopower and Hall effect measurements on the single crystal Gd2_{2}PdSi3_3, crystallizing in an AlB2_2-derived hexagonal structure are reported. The well-defined minimum in ρ\rho at a temperature above N\'eel temperature (TN_N= 21 K) and large negative MR below \sim 3TN_N, reported earlier for the polycrystals, are reproducible even in single crystals. Such features are generally uncharacteristic of Gd alloys. In addition, we also found interesting features in other data, e.g., two-step first-order-like metamagnetic transitions for the magnetic field along [0001] direction. The alloy exhibits anisotropy in all these properties, though Gd is a S-state ion.Comment: RevTeX, 5 pages, 6 encapsulated postscript figures; scheduled to be published in Phy. Rev. B (01 November 1999, B1

    PT-symmetric supersymmetry in a solvable short-range model

    Full text link
    The simplest purely imaginary and piecewise constant PT\cal PT-symmetric potential located inside a larger box is studied. Unless its strength exceeds a certain critical value, all the spectrum of its bound states remains real and discrete. We interpret such a model as an initial element of the generalized non-Hermitian Witten's hierarchy of solvable Hamiltonians and construct its first supersymmetric (SUSY) partner in closed form.Comment: 3 figures, 1 tabl

    Transport and magnetic anomalies due to A-site ionic size mismatch in La0.5_{0.5}Ca0.5x_{0.5-x}Ba_{x}MnO3_3

    Get PDF
    We present results of electrical resistivity, magnetoresistance and ac and dc magnetic susceptibility on polycrystalline samples of the type La(0.5)Ca(0.5-x)Ba(x)MnO(3) synthesized under identical heat treatment conditions. The substitution of larger Ba ions for Ca results in a non- monotonic variation of the curie temperature as the system evolves from a charge ordered insulating state for x=0 to a ferromagnetic metallic state for x=0.5. An intermediate compositino, x=0.1, interestingly exhibits ferromagnetic. insulating behaviour with thermal hysteresis in ac chi around the curie tem- perature (120K). The x=0.2 and 0.3 compounds exhibit semiconducting like behavior as the temperature is lowered below 300K, with a broad peak in rho around 80-100K: These compositions exhibit a weak increase in rho as the temperature lowered below 30K, indicative of electron localization effects. These compositions also undergo ferromagnetic transitions below about 200 and 235K respectively, though these are non-hysteretic; above all, for these compositions, MR is large and conveniently measurable over the entire tempera- ture range of measurement below Tc. This experimental finding may be of interest from the application point of view. We infer that the A-site ionic-size mismatch plays a crucial role in the deciding these properties.Comment: 5 pages, 6 Figures, Resubmitted with extended abstract on 26 Nov, 199

    PT-symmetric square well and the associated SUSY hierarchies

    Full text link
    The PT-symmetric square well problem is considered in a SUSY framework. When the coupling strength ZZ lies below the critical value Z0(crit)Z_0^{\rm (crit)} where PT symmetry becomes spontaneously broken, we find a hierarchy of SUSY partner potentials, depicting an unbroken SUSY situation and reducing to the family of sec2\sec^2-like potentials in the Z0Z \to 0 limit. For ZZ above Z0(crit)Z_0^{\rm (crit)}, there is a rich diversity of SUSY hierarchies, including some with PT-symmetry breaking and some with partial PT-symmetry restoration.Comment: LaTeX, 18 pages, no figure; broken PT-symmetry case added (Sec. 6

    Magnetic behaviour of Eu_2CuSi_3: Large negative magnetoresistance above Curie temperature

    Full text link
    We report here the results of magnetic susceptibility, electrical-resistivity, magnetoresistance (MR), heat-capacity and ^{151}Eu Mossbauer effect measurements on the compound, Eu_2CuSi_3, crystallizing in an AlB_2-derived hexagonal structure. The results establish that Eu ions are divalent, undergoing long-range ferromagnetic-ordering below (T_C=) 37 K. An interesting observation is that the sign of MR is negative even at temperatures close to 3T_C, with increasing magnitude with decreasing temperature exhibiting a peak at T_C. This observation, being made for a Cu containing magnetic rare-earth compound for the first time, is of relevance to the field of collosal magnetoresistance.Comment: To appear in PRB, RevTex, 4 pages text + 6 psFigs. Related to our earlier work on Gd systems (see cond-mat/9811382, cond-mat/9811387, cond-mat/9812069, cond-mat/9812365

    Solar physics at the Kodaikanal Observatory: A Historical Perspective

    Full text link
    This article traces the birth and growth of solar physics at the Kodaikanal Observatory of the Indian Institute of Astrophysics, Bangalore, India. A major discovery took place here in 1909 by John Evershed who detected radial outflow of matter in the penumbra of sunspots. Major developments at the Observatory since its inception in 1899 as well as the scientific results are highlighted.Comment: 26 pages, 7 figures To appear in "Magnetic Coupling between the Interior and the Atmosphere of the Sun", eds. S.S. Hasan and R.J. Rutten, Astrophysics and Space Science Proceedings, Springer-Verlag, Heidelberg, Berlin, 200

    Spectral Representation at Finite Temperature

    Get PDF
    This is a short review on the thermal, spectral representation in the real-time version of the finite temperature quantum field theory. After presenting a clear derivation of the spectral representation, we discuss the properties of its spectral function. Two applications of this representation are then considered. One is the solution of the Dyson equation for the thermal propagator. The other is the formulation of the QCD sum rules at finite temperature.Comment: Changed content, added figures. To appear in Ind. J. Phys.

    TW Hya: Spectral Variability, X-Rays, and Accretion Diagnostics

    Get PDF
    The nearest accreting T Tauri star, TW Hya was observed with spectroscopic and photometric measurements simultaneous with a long se gmented exposure using the CHANDRA satellite. Contemporaneous optical photometry from WASP-S indicates a 4.74 day period was present during this time. Absence of a similar periodicity in the H-alpha flux and the total X-ray flux points to a different source of photometric variations. The H-alpha emission line appears intrinsically broad and symmetric, and both the profile and its variability suggest an origin in the post-shock cooling region. An accretion event, signaled by soft X-rays, is traced spectroscopically for the first time through the optical emission line profiles. After the accretion event, downflowing turbulent material observed in the H-alpha and H-beta lines is followed by He I (5876A) broadening. Optical veiling increases with a delay of about 2 hours after the X-ray accretion event. The response of the stellar coronal emission to an increase in the veiling follows about 2.4 hours later, giving direct evidence that the stellar corona is heated in part by accretion. Subsequently, the stellar wind becomes re-established. We suggest a model that incorporates this sequential series of events: an accretion shock, a cooling downflow in a supersonically turbulent region, followed by photospheric and later, coronal heating. This model naturally explains the presence of broad optical and ultraviolet lines, and affects the mass accretion rates determined from emission line profiles.Comment: 61 pages; 22 figures; to appear in The Astrophysical Journa
    corecore