research

Residual resistivity ratio and its relation to the positive magnetoresistance behavior in natural multilayer LaMn2Ge2; relevance to artificial multilayer physics

Abstract

Results of low temperature magnetoresistance (Δρ/ρ\Delta\rho/\rho) and isothermal magnetization (M) measurements on polycrystalline ferromagnetic (T_C close to 300 K) natural multilayers, LaMn_{2+x}Ge_{2-y}Si_y, are reported. It is found that the samples with large residual resistivity ratio, ρ(300K)/ρ(4.2K)\rho(300K)/\rho(4.2K), exhibit large positive magnetoresistance at high magnetic fields. The Kohler's rule is not obeyed in these alloys. In addition, at 4.5 K, there is a tendency towards linear variation of Δρ/ρ\Delta\rho/\rho with magnetic field with increasing ρ(300K)/ρ(4.2K\rho(300K)/\rho(4.2K); however, the field dependence of Δρ/ρ\Delta\rho/\rho does not track that of M, thereby suggesting that the magnetoresistance originates from non-magnetic layers. It is interesting that these experimental findings on bulk polycrystals are qualitatively similar to what is seen in artificially grown multilayer systems recently.Comment: 5 pages, 3 figures, separate figures. This work is a follow-up of our earlier paper in APL, Ref. : APL Vol 71, pp 2385 (1997

    Similar works