14,428 research outputs found

    Atom-Molecule Laser Fed by Stimulated Three-Body Recombination

    Full text link
    Using three-body recombination as the underlying process, we propose a method of coherently driving an atomic Bose-Einstein condensate (BEC) into a molecular BEC. Superradiant-like stimulation favors atom-to-molecule transitions when two atomic BECs collide at a resonant kinetic energy, the result being two molecular BEC clouds moving with well defined velocities. Potential applications include the construction of a molecule laser.Comment: 4 pgs, 3 figs, RevTeX4, submitted to PRL; Corrected numerical example

    Energy efficient engine sector combustor rig test program

    Get PDF
    Under the NASA-sponsored Energy Efficient Engine program, Pratt & Whitney Aircraft has successfully completed a comprehensive combustor rig test using a 90-degree sector of an advanced two-stage combustor with a segmented liner. Initial testing utilized a combustor with a conventional louvered liner and demonstrated that the Energy Efficient Engine two-stage combustor configuration is a viable system for controlling exhaust emissions, with the capability to meet all aerothermal performance goals. Goals for both carbon monoxide and unburned hydrocarbons were surpassed and the goal for oxides of nitrogen was closely approached. In another series of tests, an advanced segmented liner configuration with a unique counter-parallel FINWALL cooling system was evaluated at engine sea level takeoff pressure and temperature levels. These tests verified the structural integrity of this liner design. Overall, the results from the program have provided a high level of confidence to proceed with the scheduled Combustor Component Rig Test Program

    Gapped tunneling spectra in the normal state of Pr2−x_{2-x}Cex_xCuO4_4

    Full text link
    We present tunneling data in the normal state of the electron doped cuprate superconductor Pr2−x_{2-x}Cex_xCuO4_4 for three different values of the doping xx. The normal state is obtained by applying a magnetic field greater than the upper critical field, Hc2H_{c2} for T<TcT < T_c. We observe an anomalous normal state gap near the Fermi level. From our analysis of the tunneling data we conclude that this is a feature of the normal state density of states. We discuss possible reasons for the formation of this gap and its implications for the nature of the charge carriers in the normal and the superconducting states of cuprate superconductors.Comment: 7 pages ReVTeX, 11 figures files included, submitted to PR

    Asymptotic Statistics of Poincar\'e Recurrences in Hamiltonian Systems with Divided Phase Space

    Full text link
    By different methods we show that for dynamical chaos in the standard map with critical golden curve the Poincar\'e recurrences P(\tau) and correlations C(\tau) asymptotically decay in time as P ~ C/\tau ~ 1/\tau^3. It is also explained why this asymptotic behavior starts only at very large times. We argue that the same exponent p=3 should be also valid for a general chaos border.Comment: revtex, 4 pages, 3 ps-figure

    Water Clouds in Y Dwarfs and Exoplanets

    Full text link
    The formation of clouds affects brown dwarf and planetary atmospheres of nearly all effective temperatures. Iron and silicate condense in L dwarf atmospheres and dissipate at the L/T transition. Minor species such as sulfides and salts condense in mid-late T dwarfs. For brown dwarfs below Teff=450 K, water condenses in the upper atmosphere to form ice clouds. Currently over a dozen objects in this temperature range have been discovered, and few previous theoretical studies have addressed the effect of water clouds on brown dwarf or exoplanetary spectra. Here we present a new grid of models that include the effect of water cloud opacity. We find that they become optically thick in objects below Teff=350-375 K. Unlike refractory cloud materials, water ice particles are significantly non-gray absorbers; they predominantly scatter at optical wavelengths through J band and absorb in the infrared with prominent features, the strongest of which is at 2.8 microns. H2O, NH3, CH4, and H2 CIA are dominant opacity sources; less abundant species such as may also be detectable, including the alkalis, H2S, and PH3. PH3, which has been detected in Jupiter, is expected to have a strong signature in the mid-infrared at 4.3 microns in Y dwarfs around Teff=450 K; if disequilibrium chemistry increases the abundance of PH3, it may be detectable over a wider effective temperature range than models predict. We show results incorporating disequilibrium nitrogen and carbon chemistry and predict signatures of low gravity in planetary- mass objects. Lastly, we make predictions for the observability of Y dwarfs and planets with existing and future instruments including the James Webb Space Telescope and Gemini Planet Imager.Comment: 23 pages, 20 figures, Revised for Ap

    Near threshold rotational excitation of molecular ions by electron-impact

    Get PDF
    New cross sections for the rotational excitation of H3+_3^+ by electrons are calculated {\it ab initio} at low impact energies. The validity of the adiabatic-nuclei-rotation (ANR) approximation, combined with RR-matrix wavefunctions, is assessed by comparison with rovibrational quantum defect theory calculations based on the treatment of Kokoouline and Greene ({\it Phys. Rev. A} {\bf 68} 012703 2003). Pure ANR excitation cross sections are shown to be accurate down to threshold, except in the presence of large oscillating Rydberg resonances. These resonances occur for transitions with ΔJ=1\Delta J=1 and are caused by closed channel effects. A simple analytic formula is derived for averaging the rotational probabilities over such resonances in a 3-channel problem. In accord with the Wigner law for an attractive Coulomb field, rotational excitation cross sections are shown to be large and finite at threshold, with a significant but moderate contribution from closed channels.Comment: 3 figures, a5 page

    Trans-Planckian signals from the breaking of local Lorentz invariance

    Full text link
    This article examines how a breakdown of a locally Lorentz invariant, point-like description of nature at tiny space-time intervals would translate into a distinctive set of signals in the primordial power spectrum generated by inflation. We examine the leading irrelevant operators that are consistent with the spatial translations and rotations of a preferred, isotropically expanding, background. A few of the resulting corrections to the primordial power spectrum do not have the usual oscillatory factor, which is sometimes taken to be characteristic of a "trans-Planckian" signal. Perhaps more interestingly, one of these leading irrelevant operators exactly reproduces a correction to the power spectrum that occurs in effective descriptions of the state of the field responsible for inflation.Comment: 11 pages, no figures, uses ReVTe

    Universal diffusion near the golden chaos border

    Full text link
    We study local diffusion rate DD in Chirikov standard map near the critical golden curve. Numerical simulations confirm the predicted exponent α=5\alpha=5 for the power law decay of DD as approaching the golden curve via principal resonances with period qnq_n (D∼1/qnαD \sim 1/q^{\alpha}_n). The universal self-similar structure of diffusion between principal resonances is demonstrated and it is shown that resonances of other type play also an important role.Comment: 4 pages Latex, revtex, 3 uuencoded postscript figure
    • …
    corecore