42 research outputs found

    A Novel Conductometric Urea Biosensor with Improved Analytical Characteristic Based on Recombinant Urease Adsorbed on Nanoparticle of Silicalite

    Get PDF
    Development of a conductometric biosensor for the urea detection has been reported. It was created using a non-typical method of the recombinant urease immobilization via adsorption on nanoporous particles of silicalite. It should be noted that this biosensor has a number of advantages, such as simple and fast performance, the absence of toxic compounds during biosensor preparation, and high reproducibility (RSD = 5.1 %). The linear range of urea determination by using the biosensor was 0.05–15 mM, and a lower limit of urea detection was 20 μM. The bioselective element was found to be stable for 19 days. The characteristics of recombinant urease-based biomembranes, such as dependence of responses on the protein and ion concentrations, were investigated. It is shown that the developed biosensor can be successfully used for the urea analysis during renal dialysis

    Improvement of amperometric transducer selectivity using nanosized phenylenediamine films

    No full text
    Abstract In this work, we studied the conditions of deposition of a semipermeable polyphenylenediamine (PPD)-based membrane on amperometric disk platinum electrodes. Restricting an access of interfering substances to the electrode surface, the membrane prevents their impact on the sensor operation. Two methods of membrane deposition by electropolymerization were compared—at varying potential (cyclic voltammetry) and at constant potential. The cyclic voltammetry was shown to be easier in performing and providing better properties of the membrane. The dependence of PPD membrane effectiveness on the number of cyclic voltammograms and phenylenediamine concentration was analyzed. It was shown that the impact of interfering substances (ascorbic acid, dopamine, cysteine, uric acid) on sensor operation could be completely avoided using three cyclic voltammograms in 30 mM phenylenediamine. On the other hand, when working with diluted samples, i.e., at lower concentrations of electroactive substances, it is reasonable to decrease the phenylenediamine concentration to 5 mM, which would result in a higher sensitivity of transducers to hydrogen peroxide due to a thinner PPD layer. The PPD membrane was tested during continuous operation and at 8-day storage and turned out to be efficient in sensor and biosensors

    Urease-based ISFET biosensor for arginine determination

    No full text
    In this work a novel biosensor for arginine determination based on the urease inhibition effect has been proposed. Ion-selective field effect transistors were used as transducers. Urease immobilized in glutaraldehyde vapor served as a biorecognition element of the biosensor. Significant part of the work was aimed at proving the urease inhibition by arginine. Optimal concentration of urea for arginine determination was chosen. Detection limit for arginine was 0.05 mM. The biosensor selectivity towards different amino acids was studied. The results of quantitative determination of L-arginine in the real sample (a drinkable solution "Arginine Veyron") were in good agreement with the producer's data (a relative error was 5.2%). The biosensor showed a good reproducibility of arginine determination

    Development of electrochemical biosensors with various types of zeolites

    No full text
    In the work, different types of zeolites were used for the development of enzyme-based electrochemical biosensors. Zeolites were added to the biorecognition elements of the biosensors and served as additional components of the biomembranes or adsorbents for enzymes. Three types of biosensors (conductometric, amperometric and potentiometric) were studied. The developed biosensors were compared with the similar biosensors without zeolites. The biosensors contained the following enzymes: urease, glucose oxidase, glutamate oxidase, and acetylcholinesterase and were intended for the detection of urea, glucose, glutamate, and acetylcholine, respectively. Construction of the biosensors using the adsorption of enzymes on zeolites has several advantages: simplicity, good reproducibility, quickness, absence of toxic compounds. These benefits are particularly important for the standardization and further mass production of the biosensors. Furthermore, a biosensor for the sucrose determination contained a three-enzyme system (invertase/mutatorase/glucose oxidase), immobilized by a combination of adsorption on silicalite and cross-linking via glutaraldehyde; such combined immobilization demonstrated better results as compared with adsorption or cross-linking separately. The analysis of urea and sucrose concentrations in the real samples was carried out. The results, obtained with biosensors, had high correlation with the results of traditional analytical methods, thus the developed biosensors are promising for practical applications

    Determination of total creatine kinase activity in blood serum using an amperometric biosensor based on glucose oxidase and hexokinase

    No full text
    International audienceCreatine kinase (CK: adenosine-5-triphosphate-creatine phosphotransferase) is an important enzyme of muscle cells; the presence of a large amount of the enzyme in blood serum is a biomarker of muscular injuries, such as acute myocardial infarction. This work describes a bi-enzyme (glucose oxidase and hexokinase based) biosensor for rapid and convenient determination of CK activity by measuring the rate of ATP production by this enzyme. Simultaneously the biosensor determines glucose concentration in the sample. Platinum disk electrodes were used as amperometric transducers. Glucose oxidase and hexokinase were co-immobilized via cross-linking with BSA by glutaraldehyde and served as a biorecognition element of the biosensor. The biosensor work at different concentrations of CK substrates (ADP and creatine phosphate) was investigated; optimal concentration of ADP was 1 mM, and creatine phosphate - 10 mM. The reproducibility of the biosensor responses to glucose, ATP and CK during a day was tested (relative standard deviation of 15 responses to glucose was 2%, to ATP - 6%, to CM - 7-18% depending on concentration of the CK). Total time of CM analysis was 10 min. The measurements of creatine kinase in blood serum samples were carried out (at 20-fold sample dilution). Twentyfold dilution of serum samples was chosen as optimal for CM determination. The biosensor could distinguish healthy and ill people and evaluate the level of CM increase. Thus, the biosensor can be used as a test-system for CM analysis in blood serum or serve as a component of multibiosensors for determination of important blood substances. Determination of activity of other kinases by the developed biosensor is also possible for research purpose

    Application of enzyme/zeolite sensor for urea analysis in serum

    No full text
    Urea biosensor based on zeolite-adsorbed urease was applied for analysis of blood serum samples. It should be noted, that this biosensor has a number of advantages, such as simple and fast performance, the absence of toxic compounds during biosensor preparation, high reproducibility and repeatability (RSD = 9% and 4%, respectively). The linear range of urea determination by using the biosensor was 0.003-0.75 mM, and the limit of urea detection was 3 mu M. The method of standard addition was used for analysis of serum samples with 500-fold dilution. Total time of analysis was 10 min. Good reproducibility of urea determination in real samples was demonstrated (RSD = 10%). Biosensor results were verified by using a common method of urea determination (diacetyl monoxime reaction). It was shown that by using this biosensor distinguishing healthy people from people with renal dysfunction becomes easier
    corecore