4,535 research outputs found

    Kinetic Theory of Collisionless Self-Gravitating Gases: Post-Newtonian Polytropes

    Get PDF
    In this paper we study the kinetic theory of many-particle astrophysical systems and we present a consistent version of the collisionless Boltzmann equation in the 1PN approximation. We argue that the equation presented by Rezania and Sobouti in A&A 354 1110 (2000) is not the correct expression to describe the evolution of a collisionless self-gravitating gas. One of the reasons that account for the previous statement is that the energy of a free-falling test particle, obeying the 1PN equations of motion for static gravitational fields, is not a static solution of the mentioned equation. The same statement holds for the angular momentum, in the case of spherical systems. We provide the necessary corrections and obtain an equation that is consistent with the corresponding equations of motion and the 1PN conserved quantities. We suggest some potential relevance for the study of high density astrophysical systems and as an application we construct the corrected version of the post-Newtonian polytropes.Comment: 23 pages, 24 figures. Accepted for publication in PR

    pPKCα mediated-HIF-1α activation related to the morphological modifications occurring in neonatal myocardial tissue in response to severe and mild hyperoxia

    Get PDF
    In premature babies birth an high oxygen level exposure can occur and newborn hyperoxia exposure can be associated with free radical oxygen release with impairment of myocardial function, while in adult animal models short exposure to hyperoxia seems to protect heart against ischemic injury. Thus, the mechanisms and consequences which take place after hyperoxia exposure are different and related to animals age. The aim of our work has been to analyze the role played by HIF-1α in the occurrence of the morphological modifications upon hyperoxia exposure in neonatal rat heart. Hyperoxia exposure induces connective compartment increase which seems to allow enhanced blood vessels growth. An increased hypoxia inducible factor-1α (HIF-1α) translocation and vascular endothelial growth factor (VEGF) expression has been found upon 95% oxygen exposure to induce morphological modifications. Upstream pPKC-α expression increase in newborn rats exposed to 95% oxygen can suggest PKC involvement in HIF-1α activation. Since nitric oxide synthase (NOS) are involved in heart vascular regulation, endothelial NOS (e-NOS) and inducible NOS (i-NOS) expression has been investigated: a lower eNOS and an higher iNOS expression has been found in newborn rats exposed to 95% oxygen related to the evidence that hyperoxia provokes a systemic vasoconstriction and to the iNOS pro-apoptotic action, respectively. The occurrence of apoptotic events, evaluated by TUNEL and Bax expression analyses, seems more evident in sample exposed to severe hyperoxia. All in all such results suggest that in newborn rats hyperoxia can trigger oxygen free radical mediated membrane injury through a pPKCα mediated HIF-1α signalling system, even though specificity of such response could be obtained by in vivo administration to the rats of specific inhibitors of PKCα. This intracellular signalling can switch molecular events leading to blood vessels development in parallel to pro-apoptotic events due to an immature anti-oxidant defensive system in newborn rat hearts

    Chiral corrections to kaon-nucleon scattering lengths

    Full text link
    We calculate the threshold T-matrices of kaon-nucleon and antikaon-nucleon scattering to one loop order in SU(3) heavy baryon chiral perturbation theory. To that order the complex-valued isospin-1 KˉN\bar KN threshold T-matrix can be successfully predicted from the isospin-0 and 1 KNKN threshold T-matrices. As expected perturbation theory fails to explain the isospin-0 KˉN\bar KN threshold T-matrix which is completely dominated by the nearby subthreshold Λ∗(1405)\Lambda^*(1405)-resonance. Cancelations of large terms of second and third chiral order are observed as they seem to be typical for SU(3) baryon chiral perturbation theory calculations. We also give the kaon and eta loop corrections to the πN\pi N scattering lengths and we investigate πΛ\pi\Lambda scattering to one-loop order. The second order s-wave low-energy constants are all of natural size and do not exceed 1 GeV−1^{-1} in magnitude.Comment: 8 pages, 2 figures, published in Phys. Rev. C64, 045204 (2001), corrections of numerical prefactors in Eqs.(10,11,12

    Theory of Room Temperature Ferromagnet V(TCNE)_x (1.5 < x < 2): Role of Hidden Flat Bands

    Full text link
    Theoretical studies on the possible origin of room temperature ferromagnetism (ferromagnetic once crystallized) in the molecular transition metal complex, V(TCNE)_x (1.5<x<2) have been carried out. For this family, there have been no definite understanding of crystal structure so far because of sample quality, though the effective valence of V is known to be close to +2. Proposing a new crystal structure for the stoichiometric case of x=2, where the valence of each TCNE molecule is -1 and resistivity shows insulating behavior, exchange interaction among d-electrons on adjacent V atoms has been estimated based on the cluster with 3 vanadium atoms and one TCNE molecule. It turns out that Hund's coupling among d orbitals within the same V atoms and antiferromagnetic coupling between d oribitals and LUMO of TCNE (bridging V atoms) due to hybridization result in overall ferromagnetism (to be precise, ferrimagnetism). This view based on localized electrons is supplemented by the band picture, which indicates the existence of a flat band expected to lead to ferromagnetism as well consistent with the localized view. The off-stoichiometric cases (x<2), which still show ferromagnetism but semiconducting transport properties, have been analyzed as due to Anderson localization.Comment: Accepted for publication in J. Phys. Soc. Jpn. Vol.79 (2010), No. 3 (March issue), in press; 6 pages, 8 figure

    Impediments to mixing classical and quantum dynamics

    Full text link
    The dynamics of systems composed of a classical sector plus a quantum sector is studied. We show that, even in the simplest cases, (i) the existence of a consistent canonical description for such mixed systems is incompatible with very basic requirements related to the time evolution of the two sectors when they are decoupled. (ii) The classical sector cannot inherit quantum fluctuations from the quantum sector. And, (iii) a coupling among the two sectors is incompatible with the requirement of physical positivity of the theory, i.e., there would be positive observables with a non positive expectation value.Comment: RevTex, 21 pages. Title slightly modified and summary section adde

    Femtosecond-laser nanostructuring of black diamond films under different gas environments

    Get PDF
    Irradiation of diamond with femtosecond (fs) laser pulses in ultra-high vacuum (UHV) conditions results in the formation of surface periodic nanostructures able to strongly interact with visible and infrared light. As a result, native transparent diamond turns into a completely different material, namely “black” diamond, with outstanding absorptance properties in the solar radiation wavelength range, which can be efficiently exploited in innovative solar energy converters. Of course, even if extremely effective, the use of UHV strongly complicates the fabrication process. In this work, in order to pave the way to an easier and more cost-effective manufacturing workflow of black diamond, we demonstrate that it is possible to ensure the same optical properties as those of UHV-fabricated films by performing an fs-laser nanostructuring at ambient conditions (i.e., room temperature and atmospheric pressure) under a constant He flow, as inferred from the combined use of scanning electron microscopy, Raman spectroscopy, and spectrophotometry analysis. Conversely, if the laser treatment is performed under a compressed air flow, or a N2 flow, the optical properties of black diamond films are not comparable to those of their UHV-fabricated counterparts

    Hypophosphataemia after intravenous iron therapy with ferric carboxymaltose—Real world experience from a tertiary centre in the UK

    Get PDF
    Background: Iron deficiency is the most common global cause of anaemia. Intravenous (IV) iron is used to correct iron deficiency anaemia (IDA) where oral iron cannot be used. Despite being effective, certain IV iron formulations cause significant hypophosphataemia. However, current knowledge on the clinical consequences of IV iron‐induced hypophosphataemia is broadly anecdotal or limited to isolated case reports. / Aims: To retrospectively examine the incidence and potential clinical consequences of hypophosphataemia post‐IV ferric carboxymaltose (FCM) in hospitalised patients with IDA (mixed aetiology). / Methods: Data were collected for 162 patients, who received a total of 169 FCM courses during a 2‐year audit period. Outcomes included incidence of moderate/severe hypophosphataemia (serum phosphate <0.65 mmol/L) ≀90 days post‐FCM, changes in alkaline phosphatase, need for phosphate replacement, and length of hospital stay. / Results: The incidence of moderate/severe hypophosphataemia post‐FCM was 33.7%; within this group the rate of severe hypophosphataemia (serum phosphate ≀0.32 mmol/L) was 8.8%. Moderate/severe hypophosphataemia persisted, with 35% of patients having a serum phosphate of <0.65 mmol/L for ≀90 days at the last measurement after IV FCM. Intervention with IV phosphate—an average of 4.4 infusions per person—was required in 29.8% of cases with moderate/severe hypophosphataemia. FCM‐induced moderate/severe hypophosphataemia was associated with a significantly longer hospital stay (P < 0.0035). / Conclusions: Moderate/severe hypophosphataemia is a frequent adverse drug reaction with FCM. In our study, FCM‐induced moderate/severe hypophosphataemia was also persistent, often required treatment, and was associated with longer hospital stay

    Molecular diagnostic and genetic characterization of highly pathogenic viruses: application during Crimean–Congo haemorrhagic fever virus outbreaks in Eastern Europe and the Middle East

    Get PDF
    AbstractSeveral haemorrhagic fevers are caused by highly pathogenic viruses that must be handled in Biosafety level 4 (BSL–4) containment. These zoonotic infections have an important impact on public health and the development of a rapid and differential diagnosis in case of outbreak in risk areas represents a critical priority. We have demonstrated the potential of a DNA resequencing microarray (PathogenID v2.0) for this purpose. The microarray was first validated in vitro using supernatants of cells infected with prototype strains from five different families of BSL-4 viruses (e.g. families Arenaviridae, Bunyaviridae, Filoviridae, Flaviviridae and Paramyxoviridae). RNA was amplified based on isothermal amplification by Phi29 polymerase before hybridization. We were able to detect and characterize Nipah virus and Crimean–Congo haemorrhagic fever virus (CCHFV) in the brains of experimentally infected animals. CCHFV was finally used as a paradigm for epidemics because of recent outbreaks in Turkey, Kosovo and Iran. Viral variants present in human sera were characterized by BLASTN analysis. Sensitivity was estimated to be 105–106 PFU/mL of hybridized cDNA. Detection specificity was limited to viral sequences having ˜13–14% of global divergence with the tiled sequence, or stretches of ˜20 identical nucleotides. These results highlight the benefits of using the PathogenID v2.0 resequencing microarray to characterize geographical variants in the follow-up of haemorrhagic fever epidemics; to manage patients and protect communities; and in cases of bioterrorism

    Demystifying Governance and its Role for Transitions in Urban Social–Ecological Systems

    Get PDF
    Governance is key to sustainable urban transitions. Governance is a system of social, power, and decision‐making processes that acts as a key driver of resource allocation and use, yet ecologists—even urban ecologists–seldom consider governance concepts in their work. Transitions to more sustainable futures are becoming increasingly important to the management of many ecosystems and landscapes, and particularly so for urban systems. We briefly identify and synthesize important governance dimensions of urban sustainability transitions, using illustrations from cities in which long‐term social–ecological governance research is underway. This article concludes with a call to ecologists who are interested in environmental stewardship, and to urban ecologists in particular, to consider the role of governance as a driver in the dynamics of the systems they study

    Mixing quantum and classical mechanics and uniqueness of Planck's constant

    Get PDF
    Observables of quantum or classical mechanics form algebras called quantum or classical Hamilton algebras respectively (Grgin E and Petersen A (1974) {\it J Math Phys} {\bf 15} 764\cite{grginpetersen}, Sahoo D (1977) {\it Pramana} {\bf 8} 545\cite{sahoo}). We show that the tensor-product of two quantum Hamilton algebras, each characterized by a different Planck's constant is an algebra of the same type characterized by yet another Planck's constant. The algebraic structure of mixed quantum and classical systems is then analyzed by taking the limit of vanishing Planck's constant in one of the component algebras. This approach provides new insight into failures of various formalisms dealing with mixed quantum-classical systems. It shows that in the interacting mixed quantum-classical description, there can be no back-reaction of the quantum system on the classical. A natural algebraic requirement involving restriction of the tensor product of two quantum Hamilton algebras to their components proves that Planck's constant is unique.Comment: revised version accepted for publication in J.Phys.A:Math.Phy
    • 

    corecore