58 research outputs found

    Lipocalin-2 is a sensitive and specific marker of bacterial iInfection in children

    Get PDF
    Abstract Introduction Bacterial infection is the leading cause of death in children globally. Clinical algorithms to identify children who are likely to benefit from antimicrobial treatment remain suboptimal. Biomarkers that accurately identify serious bacterial infection (SBI) could improve diagnosis and clinical management. Lipocalin 2 (LCN2) and neutrophil collagenase (MMP-8) are neutrophil-derived biomarkers associated with bacterial infection. Methods We evaluated LCN2 and MMP-8 as candidate biomarkers in 40 healthy controls and 151 febrile children categorised confirmed SBI, probable SBI, or viral infection. The diagnostic performance of LCN2 and MMP-8 to predict SBI was estimated by the area under the receiver operating characteristic curve (AUROC) and compared to the performance of C-reactive protein (CRP). Results Plasma LCN2 and MMP-8 concentration were predictive of SBI. The AUROC (95% CI) for LCN2, MMP8 and CRP to predict SBI was 0.88 (0.82-0.94); 0.80 (0.72-0.87) and 0.89 (0.84-0.94), respectively. The diagnostic performance of LCN2 in combination with CRP was significantly superior to either marker alone: AUROC 0.92 (95% CI: 0.88-0.96). Conclusion LCN2 is a sensitive and specific predictor of SBI in children which could be used to improve clinical management and antimicrobial stewardship. LCN2 should be further evaluated in prospective clinical studies

    Discovery and Validation of Biomarkers to Guide Clinical Management of Pneumonia in African Children

    Get PDF
    Background Pneumonia is the leading cause of death in children globally. Clinical algorithms remain suboptimal for distinguishing severe pneumonia from other causes of respiratory distress such as malaria or distinguishing bacterial pneumonia and pneumonia from others causes, such as viruses. Molecular tools could improve diagnosis and management. Methods We conducted a mass spectrometry–based proteomic study to identify and validate markers of severity in 390 Gambian children with pneumonia (n = 204) and age-, sex-, and neighborhood-matched controls (n = 186). Independent validation was conducted in 293 Kenyan children with respiratory distress (238 with pneumonia, 41 with Plasmodium falciparum malaria, and 14 with both). Predictive value was estimated by the area under the receiver operating characteristic curve (AUC). Results Lipocalin 2 (Lpc-2) was the best protein biomarker of severe pneumonia (AUC, 0.71 [95% confidence interval, .64–.79]) and highly predictive of bacteremia (78% [64%–92%]), pneumococcal bacteremia (84% [71%–98%]), and “probable bacterial etiology” (91% [84%–98%]). These results were validated in Kenyan children with severe malaria and respiratory distress who also met the World Health Organization definition of pneumonia. The combination of Lpc-2 and haptoglobin distinguished bacterial versus malaria origin of respiratory distress with high sensitivity and specificity in Gambian children (AUC, 99% [95% confidence interval, 99%–100%]) and Kenyan children (82% [74%–91%]). Conclusions Lpc-2 and haptoglobin can help discriminate the etiology of clinically defined pneumonia and could be used to improve clinical management. These biomarkers should be further evaluated in prospective clinical studies

    Divergent allocation of sperm and the seminal proteome along a competition gradient in Drosophila melanogaster

    No full text
    Sperm competition favors large, costly ejaculates, and theory predicts the evolution of allocation strategies that enable males to plastically tailor ejaculate expenditure to sperm competition threat. While greater sperm transfer in response to a perceived increase in the risk of sperm competition is well-supported, we have a poor understanding of whether males (i) respond to changes in perceived intensity of sperm competition, (ii) use the same allocation rules for sperm and seminal fluid, and (iii) experience changes in current and future reproductive performance as a result of ejaculate compositional changes. Combining quantitative proteomics with fluorescent sperm labeling, we show that Drosophila melanogaster males exercise independent control over the transfer of sperm and seminal fluid proteins (SFPs) under different levels of male–male competition. While sperm transfer peaks at low competition, consistent with some theoretical predictions based on sperm competition intensity, the abundance of transferred SFPs generally increases at high competition levels. However, we find that clusters of SFPs vary in the directionality and sensitivity of their response to competition, promoting compositional change in seminal fluid. By tracking the degree of decline in male mating probability and offspring production across successive matings, we provide evidence that ejaculate compositional change represents an adaptive response to current sperm competition, but one that comes at a cost to future mating performance. Our work reveals a previously unknown divergence in ejaculate component allocation rules, exposes downstream costs of elevated ejaculate investment, and ultimately suggests a central role for ejaculate compositional plasticity in sexual selection

    Lack of EGFR-activating mutations in European patients with triple-negative breast cancer could emphasise geographic and ethnic variations in breast cancer mutation profiles

    Get PDF
    INTRODUCTION: Triple-negative breast cancers (TNBCs) are characterised by lack of expression of hormone receptors and epidermal growth factor receptor 2 (HER-2). As they frequently express epidermal growth factor receptors (EGFRs), anti-EGFR therapies are currently assessed for this breast cancer subtype as an alternative to treatments that target HER-2 or hormone receptors. Recently, EGFR-activating mutations have been reported in TNBC specimens in an East Asian population. Because variations in the frequency of EGFR-activating mutations in East Asians and other patients with lung cancer have been described, we evaluated the EGFR mutational profile in tumour samples from European patients with TNBC. METHODS: We selected from a DNA tumour bank 229 DNA samples isolated from frozen, histologically proven and macrodissected invasive TNBC specimens from European patients. PCR and high-resolution melting (HRM) analyses were used to detect mutations in exons 19 and 21 of EGFR. The results were then confirmed by bidirectional sequencing of all samples. RESULTS: HRM analysis allowed the detection of three EGFR exon 21 mutations, but no exon 19 mutations. There was 100% concordance between the HRM and sequencing results. The three patients with EGFR exon 21 abnormal HRM profiles harboured the rare R836R SNP, but no EGFR-activating mutation was identified. CONCLUSIONS: This study highlights variations in the prevalence of EGFR mutations in TNBC. These variations have crucial implications for the design of clinical trials involving anti-EGFR treatments in TNBC and for identifying the potential target population
    corecore