144 research outputs found

    Spectra of Harmonium in a magnetic field using an initial value representation of the semiclassical propagator

    Full text link
    For two Coulombically interacting electrons in a quantum dot with harmonic confinement and a constant magnetic field, we show that time-dependent semiclassical calculations using the Herman-Kluk initial value representation of the propagator lead to eigenvalues of the same accuracy as WKB calculations with Langer correction. The latter are restricted to integrable systems, however, whereas the time-dependent initial value approach allows for applications to high-dimensional, possibly chaotic dynamics and is extendable to arbitrary shapes of the potential.Comment: 11 pages, 1 figur

    On the lower bound on the exchange-correlation energy in two dimensions

    Get PDF
    We study the properties of the lower bound on the exchange-correlation energy in two dimensions. First we review the derivation of the bound and show how it can be written in a simple density-functional form. This form allows an explicit determination of the prefactor of the bound and testing its tightness. Next we focus on finite two-dimensional systems and examine how their distance from the bound depends on the system geometry. The results for the high-density limit suggest that a finite system that comes as close as possible to the ultimate bound on the exchange-correlation energy has circular geometry and a weak confining potential with a negative curvature

    Unpaired and spin-singlet paired states of a two-dimensional electron gas in a perpendicular magnetic field

    Full text link
    We present a variational study of both unpaired and spin-singlet paired states induced in a two-dimensional electron gas at low density by a perpendicular magnetic field. It is based on an improved circular-cell approximation which leads to a number of closed analytical results. The ground-state energy of the Wigner crystal containing a single electron per cell in the lowest Landau level is obtained as a function of the filling factor ν\nu: the results are in good agreement with those of earlier approaches and predict νc≈0.25\nu_{c} \approx 0.25 for the upper filling factor at which the solid-liquid transition occurs. A novel localized state of spin-singlet electron pairs is examined and found to be a competitor of the unpaired state for filling factor ν>1\nu >1. The corresponding phase boundary is quantitatively displayed in the magnetic field-electron density plane.Comment: 19 pages, 8 figures, submitted to Phys. Rev. B on 7th April 2001. to appear in Phys. Rev.

    Quantum-dot lithium in zero magnetic field: Electronic properties, thermodynamics, and a liquid-solid transition in the ground state

    Full text link
    Energy spectra, electron densities, pair correlation functions and heat capacity of a quantum-dot lithium in zero external magnetic field (a system of three interacting two-dimensional electrons in a parabolic confinement potential) are studied using the exact diagonalization approach. A particular attention is given to a Fermi-liquid -- Wigner-solid transition in the ground state of the dot, induced by the intra-dot Coulomb interaction.Comment: 12 pages, incl. 16 figure

    The evaluation of liver fibrosis regression in chronic hepatitis C patients after the treatment with direct-acting antiviral agents – A review of the literature

    Get PDF
    The second-generation of direct-acting antiviral agents are the current treatment for chronic viral hepatitis C infection. To evaluate the regression of liver fibrosis in patients receiving this therapy, liver biopsy remains the most accurate method, but the invasiveness of this procedure is its major drawback. Different non-invasive tests have been used to study changes in the stage of liver fibrosis in patients with chronic viral hepatitis treated with the second-generation of direct-acting antiviral agents: liver stiffness measurements (with transient elastography or acoustic radiation force impulse elastography) or different scores that use serum markers to calculate a fibrosis score. We prepared a literature review of the available data regarding the long-term evolution of liver fibrosis after the treatment with direct-acting antiviral agents for chronic viral hepatitis C

    Probing the Shape of Quantum Dots with Magnetic Fields

    Full text link
    A tool for the identification of the shape of quantum dots is developed. By preparing a two-electron quantum dot, the response of the low-lying excited states to a homogeneous magnetic field, i.e. their spin and parity oscillations, is studied for a large variety of dot shapes. For any geometric configuration of the confinement we encounter characteristic spin singlet - triplet crossovers. The magnetization is shown to be a complementary tool for probing the shape of the dot.Comment: 11 pages, 4 figure

    Two Electrons in a Quantum Dot: A Unified Approach

    Full text link
    Low-lying energy levels of two interacting electrons confined in a two-dimensional parabolic quantum dot in the presence of an external magnetic field have been revised within the frame of a novel model. The present formalism, which gives closed algebraic solutions for the specific values of magnetic field and spatial confinement length, enables us to see explicitly individual effects of the electron correlation.Comment: 14 page

    Formation and control of electron molecules in artificial atoms: Impurity and magnetic-field effects

    Full text link
    Interelectron interactions and correlations in quantum dots can lead to spontaneous symmetry breaking of the self-consistent mean field resulting in formation of Wigner molecules. With the use of spin-and-space unrestricted Hartree-Fock (sS-UHF) calculations, such symmetry breaking is discussed for field-free conditions, as well as under the influence of an external magnetic field. Using as paradigms impurity-doped (as well as the limiting case of clean) two-electron quantum dots (which are analogs to helium-like atoms), it is shown that the interplay between the interelectron repulsion and the electronic zero-point kinetic energy leads, for a broad range of impurity parameters, to formation of a singlet ground-state electron molecule, reminiscent of the molecular picture of doubly-excited helium. Comparative analysis of the conditional probability distributions for the sS-UHF and the exact solutions for the ground state of two interacting electrons in a clean parabolic quantum dot reveals that both of them describe formation of an electron molecule with similar characteristics. The self-consistent field associated with the triplet excited state of the two-electron quantum dot (clean as well as impurity-doped) exhibits symmetry breaking of the Jahn-Teller type, similar to that underlying formation of nonspherical open-shell nuclei and metal clusters. Furthermore, impurity and/or magnetic-field effects can be used to achieve controlled manipulation of the formation and pinning of the discrete orientations of the Wigner molecules. Impurity effects are futher illustrated for the case of a quantum dot with more than two electrons.Comment: Latex/Revtex, 10 pages with 4 gif figures. Small changes to explain the difference between Wigner and Jahn-Teller electron molecules. A complete version of the paper with high quality figures inside the text is available at http://shale.physics.gatech.edu/~costas/qdhelium.html For related papers, see http://www.prism.gatech.edu/~ph274c

    Collective and independent-particle motion in two-electron artificial atoms

    Full text link
    Investigations of the exactly solvable excitation spectra of two-electron quantum dots with a parabolic confinement, for different values of the parameter R_W expressing the relative magnitudes of the interelectron repulsion and the zero-point kinetic energy of the confined electrons, reveal for large R_W a remarkably well-developed ro-vibrational spectrum associated with formation of a linear trimeric rigid molecule composed of the two electrons and the infinitely heavy confining dot. This spectrum transforms to one characteristic of a "floppy" molecule for smaller values of R_W. The conditional probability distribution calculated for the exact two-electron wave functions allows for the identification of the ro-vibrational excitations as rotations and stretching/bending vibrations, and provides direct evidence pertaining to the formation of such molecules.Comment: Published version. Latex/Revtex, 5 pages with 2 postscript figures embedded in the text. For related papers, see http://www.prism.gatech.edu/~ph274c
    • …
    corecore