142 research outputs found

    GLONASS CDMA L3 ambiguity resolution and positioning

    Get PDF
    A first assessment of GLONASS CDMA L3 ambiguity resolution and positioning performance is provided. Our analyses are based on GLONASS L3 data from the satellite pair SVNs 755-801, received by two JAVAD receivers at Curtin University, Perth, Australia. In our analyses, four different versions of the two-satellite model are applied: the geometry-free model, the geometry-based model , the height-constrained geometry-based model, and the geometry-fixed model. We study the noise characteristics (carrier-to-noise density, measurement precision), the integer ambiguity resolution performance (success rates and distribution of the ambiguity residuals), and the positioning performance (ambiguity float and ambiguity fixed). The results show that our empirical outcomes are consistent with their formal counterparts and that the GLONASS data have a lower noise level than that of GPS, particularly in case of the code data. This difference is not only seen in the noise levels but also in their onward propagation to the ambiguity time series and ambiguity residuals distribution

    On-line optimization of glutamate production based on balanced metabolic control by RQ

    Get PDF
    In glutamate fermentations by Corynebacterium glutamicum, higher glutamate concentration could be achieved by constantly controlling dissolved oxygen concentration (DO) at a lower level; however, by-product lactate also severely accumulated. The results of analyzing activities changes of the two key enzymes, glutamate and lactate dehydrogenases involved with the fermentation, and the entire metabolic network flux analysis showed that the lactate overproduction was because the metabolic flux in TCA cycle was too low to balance the glucose glycolysis rate. As a result, the respiratory quotient (RQ) adaptive control based “balanced metabolic control” (BMC) strategy was proposed and used to regulate the TCA metabolic flux rate at an appropriate level to achieve the metabolic balance among glycolysis, glutamate synthesis, and TCA metabolic flux. Compared with the best results of various DO constant controls, the BMC strategy increased the maximal glutamate concentration by about 15% and almost completely repressed the lactate accumulation with competitively high glutamate productivity

    Wolbachia Symbiont Infections Induce Strong Cytoplasmic Incompatibility in the Tsetse Fly Glossina morsitans

    Get PDF
    Tsetse flies are vectors of the protozoan parasite African trypanosomes, which cause sleeping sickness disease in humans and nagana in livestock. Although there are no effective vaccines and efficacious drugs against this parasite, vector reduction methods have been successful in curbing the disease, especially for nagana. Potential vector control methods that do not involve use of chemicals is a genetic modification approach where flies engineered to be parasite resistant are allowed to replace their susceptible natural counterparts, and Sterile Insect technique (SIT) where males sterilized by chemical means are released to suppress female fecundity. The success of genetic modification approaches requires identification of strong drive systems to spread the desirable traits and the efficacy of SIT can be enhanced by identification of natural mating incompatibility. One such drive mechanism results from the cytoplasmic incompatibility (CI) phenomenon induced by the symbiont Wolbachia. CI can also be used to induce natural mating incompatibility between release males and natural populations. Although Wolbachia infections have been reported in tsetse, it has been a challenge to understand their functional biology as attempts to cure tsetse of Wolbachia infections by antibiotic treatment damages the obligate mutualistic symbiont (Wigglesworthia), without which the flies are sterile. Here, we developed aposymbiotic (symbiont-free) and fertile tsetse lines by dietary provisioning of tetracycline supplemented blood meals with yeast extract, which rescues Wigglesworthia-induced sterility. Our results reveal that Wolbachia infections confer strong CI during embryogenesis in Wolbachia-free (GmmApo) females when mated with Wolbachia-infected (GmmWt) males. These results are the first demonstration of the biological significance of Wolbachia infections in tsetse. Furthermore, when incorporated into a mathematical model, our results confirm that Wolbachia can be used successfully as a gene driver. This lays the foundation for new disease control methods including a population replacement approach with parasite resistant flies. Alternatively, the availability of males that are reproductively incompatible with natural populations can enhance the efficacy of the ongoing sterile insect technique (SIT) applications by eliminating the need for chemical irradiation

    NADPH oxidases in cardiovascular disease: insights from in vivo models and clinical studies

    Get PDF
    NADPH oxidase family enzymes (or NOXs) are the major sources of reactive oxygen species (ROS) that are implicated in the pathophysiology of many cardiovascular diseases. These enzymes appear to be especially important in the modulation of redox-sensitive signalling pathways that underlie key cellular functions such as growth, differentiation, migration and proliferation. Seven distinct members of the family have been identified of which four (namely NOX1, 2, 4 and 5) may have cardiovascular functions. In this article, we review our current understanding of the roles of NOX enzymes in several common cardiovascular disease states, with a focus on data from genetic studies and clinical data where available

    A Deep Insight into the Sialome of Rhodnius neglectus, a vector of chagas disease

    Get PDF
    Background Triatomines are hematophagous insects that act as vectors of Chagas disease. Rhodnius neglectus is one of these kissing bugs found, contributing to the transmission of this American trypanosomiasis. The saliva of hematophagous arthropods contains bioactive molecules responsible for counteracting host haemostatic, inflammatory, and immuneresponses. Methods/Principal Findings Next generation sequencing and mass spectrometry-based protein identification were performed to investigate the content of triatomine R. neglectus saliva.We deposited 4,230 coding DNA sequences (CDS) in GenBank. A set of 636 CDS of proteins of putative secretory nature was extracted from the assembled reads, 73 of them confirmed by proteomic analysis. The sialome of R. neglectus was characterized and serine protease transcripts detected. The presence of ubiquitous protein families was revealed, including lipocalins, serine protease inhibitors, and antigen-5. Metalloproteases, disintegrins, and odorant binding protein families were less abundant. Conclusions/Significance The data presented improve our understanding of hematophagous arthropod sialomes, and aid in understanding hematophagy and the complex interplay among vectors and their vertebrate hosts

    Peptidoglycan hydrolases-potential weapons against Staphylococcus aureus

    Full text link

    Serine alkaline protease overproduction capacity of Bacillus licheniformis

    No full text
    A comprehensive metabolic network that considers 147 reaction fluxes and 105 metabolites is used in a mass-Aux-balance-based stoichiometric model for Bacillus licheniformis for serine alkaline protease (SAP) overproduction. The theoretical capacity analysis leading to optimized SAP overproduction was carried out by using a linear constrained optimization technique for several specific growth rates and the variation of the fluxes were calculated by fixing the sole carbon source citrate's uptake rate at 10 mmol/gDW/h. The theoretical data-based capacity analysis was conducted by using the model in combination with the off-line extracellular analyses of the dry cell and the metabolites that were citrate, organic acids, amino acids, and SAP; and the variations in the intracellular fluxes were obtained for the three periods of the batch bioprocess. The flux distribution maps of the analyses showed that the tricarboxylic acid cycle was active and the cells utilized the gluconeogenesis pathway, the pentose phosphate pathway, and the anaplerotic reactions; nevertheless, the glyoxylate shunt and the glycolysis pathway were inactive. The theoretical capacity analysis showed that SAP synthesis flux increased with the decrease in the specific growth rate, and was the highest at mu = 0 h(-1) as 0.0260 mmol/gDW/h. Both in the theoretical capacity and the theoretical data-based capacity analyses, among the fluxes towards the amino acid groups, aspartic acid group had the highest value and aromatic acid group had the lowest flux value; the flux distributions are similar. The Aux values towards SAP was maximum in Period II, whereas it was minimum in Period I. In Period II of the theoretical data-based capacity analysis, the fluxes of alanine and valine are higher than the other amino acid fluxes; and the pyruvate branch point seems to be the potential metabolic engineering site. The results reveal that SAP production can theoretically be increased 1.09, 16.68, and 7.21 folds, respectively, in Periods I, II, and III. The diversions in the pathways and certain metabolic reactions depending on the bioprocess periods and potential strategies for improving SAP production are also discussed. (C) 2000 Elsevier Science Inc. All rights reserved

    Metabolic flux analyses for serine alkaline protease production

    No full text
    The intracellular metabolic fluxes through the central carbon pathways in Bacillus licheniformis in serine alkaline protease (SAP) production were calculated to predict the potential strategies for increasing the performance of the bacilli, by using two optimization approaches, i.e. the theoretical data-based (TDA) and the theoretical data-based capacity (TDC) analyses based on respectively minimum in-vivo SAP accumulation rate and maximum SAP synthesis rate assumptions, at low-, medium, and high-oxygen transfer conditions. At all periods of low-oxygen transfer condition, in lag and early exponential periods of medium-oxygen transfer (MOT) condition, and SAP synthesis period of high-oxygen transfer (HOT) condition, the TDA and TDC analyses revealed that SAP overproduction capacity is almost equal to the observed SAP production due to the regulation effect of the oxygen transfer. In the growth and early SAP synthesis period and in SAP synthesis period at MOT condition the calculated results of the two analyses reveal that SAP synthesis rate of the microorganism can be increased 7.2 and 16.7 folds, respectively; whereas, in the growth and early SAP synthesis period at HOT condition it can be increased 12.6 folds. The diversions in the biochemical reaction network and the influence of the oxygen transfer on the performance of the bacilli were also presented. The results encourage the application of metabolic engineering for lifting the rate limitations and for improving the genetic regulations in order to increase the SAP production. (C) 2000 Elsevier Science Inc. All rights reserved

    Metabolic flux analysis for serine alkaline protease fermentation by Bacillus licheniformis in a defined medium: Effects of the oxygen transfer rate

    No full text
    The metabolic fluxes through the central carbon pathways in the bioprocess for serine alkaline protease (SAP) production by Bacillus licheniformis were calculated by the metabolic flux-based stoichiometric model based on the proposed metabolic network that contains 102 metabolites and 133 reaction fluxes using the time profiles of citrate, dry cell, organic acids, amino acids, and SAP as the constraints. The model was solved by minimizing the SAP accumulation rate in the cell, The effects of the oxygen-transfer rate (OTR) on the metabolic fluxes were investigated in a defined medium where citrate was used as the sole carbon source. The centra I pathways were active for the growth and the SAP synthesis in all the periods of the bioprocess at low (LOT), medium (MOT), and high (HOT) oxygen-transfer conditions. The flux partitioning in the TCA cycle at alpha-ketoglutarate towards glutamate group and at oxalacetate (OA) toward aspartic acid group amino acids were dependent on the OTR. The flux of the anaplerotic reaction that connects the TCA cycle either from malate or OA to the gluconeogenesis pathway via the main branch point pyruvate (Pyr) was also influenced by the OTR. With the decrease in the OTR, the intracellular flux values after glycerate 3-phosphate (PG3) in the gluconeogenesis pathway and the specific growth rate decreased. The total ATP-generation rate increased with the increase in OTR. The pathway towards the aspartic acid family amino acids which is important for sporulation that precedes the SAP synthesis were all active throughout the bioprocess. Metabolic flux analysis results at LOT, MOT, and HOT conditions encourage the design of an oxygen-transfer strategy in the bioreactor; moreover, asparagine synthetase or aspartate kinase could be the potential metabolic engineering sites due to the low value of the flux from the branch point aspartate toward asparagine. (C) 1999 John Wiley & Sons, Inc
    corecore