3,052 research outputs found

    Inelastic neutron scattering in random binary alloys : an augmented space approach

    Full text link
    Combining the augmented space representation for phonons with a generalized version of Yonezawa-Matsubara diagrammatic technique, we have set up a formalism to seperate the coherent and incoherent part of the total intensity of thermal neutron scattering from disordered alloys. This is done exacly without taking any recourse to mean-field like approximation (as done previously). The formalism includes disorder in masses, force constants and scattering lengths. Implementation of the formalism to realistic situations is performed by an augmented space Block recursion which calculates entire Green matrix and self energy matrix which in turn is needed to evaluate the coherent and incoherent intensities. we apply the formalism to NiPd and NiPt alloys. Numerical results on coherent and incoherent scattering cross sections are presented along the highest symmetry directions. Finally the incoherent intensities are compared with the CPA and also with experiments.Comment: 18 pages, 13 figure

    The Structure of Barium in the hcp Phase Under High Pressure

    Full text link
    Recent experimental results on two hcp phases of barium under high pressure show interesting variation of the lattice parameters. They are here interpreted in terms of electronic structure calculation by using the LMTO method and generalized pseudopotential theory (GPT) with a NFE-TBB approach. In phase II the dramatic drop in c/a is an instability analogous to that in the group II metals but with the transfer of s to d electrons playing a crucial role in Ba. Meanwhile in phase V, the instability decrease a lot due to the core repulsion at very high pressure. PACS numbers: 62.50+p, 61.66Bi, 71.15.Ap, 71.15Hx, 71.15LaComment: 29 pages, 8 figure

    Vibration Isolation Design for the Micro-X Rocket Payload

    Get PDF
    Micro-X is a NASA-funded, sounding rocket-borne X-ray imaging spectrometer that will allow high precision measurements of velocity structure, ionization state and elemental composition of extended astrophysical systems. One of the biggest challenges in payload design is to maintain the temperature of the detectors during launch. There are several vibration damping stages to prevent energy transmission from the rocket skin to the detector stage, which causes heating during launch. Each stage should be more rigid than the outer stages to achieve vibrational isolation. We describe a major design effort to tune the resonance frequencies of these vibration isolation stages to reduce heating problems prior to the projected launch in the summer of 2014.Comment: 6 pages, 7 figures, LTD15 Conference Proceeding

    Metal-to-insulator crossover and pseudogap in single-layer compound Bi2+x_{2+x}Sr2x_{2-x}Cu1+y_{1+y}O6+δ_{6+\delta} single crystals in high magnetic fields

    Full text link
    The in-plane ρab(H)\rho_{ab}(H) and the out-of-plane ρc(H)\rho_c(H) magneto-transport in magnetic fields up to 28 T has been investigated in a series of high quality, single crystal, hole-doped La-free Bi2201 cuprates for a wide doping range and over a wide range of temperatures down to 40 mK. With decreasing hole concentration going from the overdoped (p=0.2) to the underdoped (p=0.12) regimes, a crossover from a metallic to and insulating behavior of ρab(T)\rho_{ab}(T) is observed in the low temperature normal state, resulting in a disorder induced metal insulator transition. In the zero temperature limit, the normal state ratio ρc(H)/ρab(H)\rho_c(H)/\rho_{ab}(H) of the heavily underdoped samples in pure Bi2201 shows an anisotropic 3D behavior, in striking contrast with that observed in La-doped Bi2201 and LSCO systems. Our data strongly support that that the negative out-of-plane magnetoresistance is largely governed by interlayer conduction of quasiparticles in the superconducting state, accompanied by a small contribution of normal state transport associated with the field dependent pseudogap. Both in the optimal and overdoped regimes, the semiconducting behavior of ρc(H)\rho_c(H) persists even for magnetic fields above the pseudogap closing field HpgH_{pg}. The method suggested by Shibauchi \textit{et al.} (Phys. Rev. Lett. \textbf{86}, 5763, (2001)) for evaluating HpgH_{pg} is unsuccessful for both under- and overdoped Bi2201 samples. Our findings suggest that the normal state pseudogap is not always a precursor of superconductivity.Comment: 11 pages, 8 figures, published in PRB Nov 200

    Overconfidence is universal? Elicitation of genuine overconfidence (EGO) procedure reveals systematic differences across domain, task knowledge, and incentives in four populations

    Get PDF
    Overconfidence is sometimes assumed to be a human universal, but there remains a dearth of data systematically measuring overconfidence across populations and contexts. Moreover, cross-cultural experiments often fail to distinguish between placement and precision and worse still, often compare population-mean placement estimates rather than individual performance subtracted from placement. Here we introduce a procedure for concurrently capturing both placement and precision at an individual level based on individual performance: The Elicitation of Genuine Overconfidence (EGO) procedure. We conducted experiments using the EGO procedure, manipulating domain, task knowledge, and incentives across four populations—Japanese, Hong Kong Chinese, Euro Canadians, and East Asian Canadians. We find that previous measures of population-level overconfidence may have been misleading; rather than universal, overconfidence is highly context dependent. Our results reveal cross-cultural differences in sensitivity to incentives and differences in overconfidence strategies, with underconfidence, accuracy, and overconfidence. Comparing sexes, we find inconsistent results for overplacement, but that males are consistently more confident in their placement. These findings have implications for our understanding of the adaptive value of overconfidence and its role in explaining population-level and individual-level differences in economic and psychological behavior

    A single atom detector integrated on an atom chip: fabrication, characterization and application

    Full text link
    We describe a robust and reliable fluorescence detector for single atoms that is fully integrated into an atom chip. The detector allows spectrally and spatially selective detection of atoms, reaching a single atom detection efficiency of 66%. It consists of a tapered lensed single-mode fiber for precise delivery of excitation light and a multi-mode fiber to collect the fluorescence. The fibers are mounted in lithographically defined holding structures on the atom chip. Neutral 87Rb atoms propagating freely in a magnetic guide are detected and the noise of their fluorescence emission is analyzed. The variance of the photon distribution allows to determine the number of detected photons / atom and from there the atom detection efficiency. The second order intensity correlation function of the fluorescence shows near-perfect photon anti-bunching and signs of damped Rabi-oscillations. With simple improvements one can boost the detection efficiency to > 95%.Comment: 24 pages, 11 figure

    Effect of Electron Correlation on the Bragg Reflection

    Full text link
    We study the effect of correlation on the Bragg reflection in the 3D electron gas, the 1D Luttinger liquid, and the 1D Hubbard model in an alternating periodic potential at half-filling. In the last system, we suggest a Luttinger-liquid-type quasi-metallic state in the crossover region from the band insulator to the Mott insulator. We explain the appearance of this state in terms of the incompatibility of the Bragg reflection with the concept of Luttinger liquids.Comment: 4 pages, 3 figure

    Study of Phase Stability in NiPt Systems

    Full text link
    We have studied the problem of phase stability in NiPt alloy system. We have used the augmented space recursion based on the TB-LMTO as the method for studying the electronic structure of the alloys. In particular, we have used the relativistic generalization of our earlier technique. We note that, in order to predict the proper ground state structures and energetics, in addition to relativistic effects, we have to take into account charge transfer effects with precision.Comment: 22 pages, 7 figures. Accepted for publication in JPC
    corecore