131 research outputs found

    Second-order electronic correlation effects in a one-dimensional metal

    Full text link
    The Pariser-Parr-Pople (PPP) model of a single-band one-dimensional (1D) metal is studied at the Hartree-Fock level, and by using the second-order perturbation theory of the electronic correlation. The PPP model provides an extension of the Hubbard model by properly accounting for the long-range character of the electron-electron repulsion. Both finite and infinite version of the 1D-metal model are considered within the PPP and Hubbard approximations. Calculated are the second-order electronic-correlation corrections to the total energy, and to the electronic-energy bands. Our results for the PPP model of 1D metal show qualitative similarity to the coupled-cluster results for the 3D electron-gas model. The picture of the 1D-metal model that emerges from the present study provides a support for the hypothesis that the normal metallic state of the 1D metal is different from the ground state.Comment: 21 pages, 16 figures; v2: small correction in title, added 3 references, extended and reformulated a few paragraphs (detailed information at the end of .tex file); added color to figure

    Dynamical generalization of a solvable family of two-electron model atoms with general interparticle repulsion

    Full text link
    Holas, Howard and March [Phys. Lett. A {\bf 310}, 451 (2003)] have obtained analytic solutions for ground-state properties of a whole family of two-electron spin-compensated harmonically confined model atoms whose different members are characterized by a specific interparticle potential energy u(r12r_{12}). Here, we make a start on the dynamic generalization of the harmonic external potential, the motivation being the serious criticism levelled recently against the foundations of time-dependent density-functional theory (e.g. [J. Schirmer and A. Dreuw, Phys. Rev. A {\bf 75}, 022513 (2007)]). In this context, we derive a simplified expression for the time-dependent electron density for arbitrary interparticle interaction, which is fully determined by an one-dimensional non-interacting Hamiltonian. Moreover, a closed solution for the momentum space density in the Moshinsky model is obtained.Comment: 5 pages, submitted to J. Phys.

    Neural-network analysis of the vibrational spectra of N-acetyl L-alanyl N'-methyl amide conformational states

    Get PDF
    Density-functional theory (DFT) calculations utilizing the Becke 3LYP hybrid functional have been carried out for N-acetyl L-alanine Nā€²-methylamide and examined with respect to the effect of water on the structure, the vibrational frequencies, vibrational absorption (VA), vibrational circular dichroism (VCD), Raman spectra, and Raman optical activity (ROA) intensities. The large changes due to hydration in the structures, and the relative stability of the conformer, reflected in the VA, VCD, Raman spectra, and ROA spectra observed experimentally, are reproduced by the DFT calculations. A neural network has been constructed for reproducing the inverse scattering data (we infer the structural coordinates from spectroscopic data) that the DFT method could produce. The purpose of the network has also been to generate the large set of conformational states associated with each set of spectroscopic data for a given conformer of the molecule by interpolation. Finally the neural network performances are used to monitor a sensitivity analysis of the importance of secondary structures and the influence of the solvent. The neural network is shown to be good in distinguishing the different conformers of the small alanine peptide, especially in the gas phase.Peer reviewe

    Response of C(60) and C(n) to ultrashort laser pulses

    Get PDF
    Journals published by the American Physical Society can be found at http://journals.aps.org/In this paper we introduce a method for realistic simulations of nonadiabatic processes, including the interaction of light with matter. Calculations of the response Of C(60) and carbon chains to laser pulses demonstrate that even rather subtle features are correctly described. For example, in C(60) the pentagonal-pinch models dominant at low fluence, the breathing mode is dominant at high fluence, and dimers are preferentially emitted during photofragmentation. In carbon chains, on the other hand, trimers tend to be broken off. After collisional fragmentation, the remnants of a C(60) molecule tend to reform their bonds, yielding new 5, 6, or 7 membered rings

    Pelestarian kata arkaik dalam Dialek Melayu Saratok

    Get PDF

    ProtSweep, 2Dsweep and DomainSweep: protein analysis suite at DKFZ

    Get PDF
    The wealth of transcript information that has been made publicly available in recent years has led to large pools of individual web sites offering access to bioinformatics software. However, finding out which services exist, what they can or cannot do, how to use them and how to feed results from one service to the next one in the right format can be very time and resource consuming, especially for non-experts

    From protons to OXPHOS supercomplexes and Alzheimer's disease: Structureā€“dynamicsā€“function relationships of energy-transducing membranes

    Get PDF
    AbstractBy the elucidation of high-resolution structures the view of the bioenergetic processes has become more precise. But in the face of these fundamental advances, many problems are still unresolved. We have examined a variety of aspects of energy-transducing membranes from large protein complexes down to the level of protons and functional relevant picosecond protein dynamics. Based on the central role of the ATP synthase for supplying the biological fuel ATP, one main emphasis was put on this protein complex from both chloroplast and mitochondria. In particular the stoichiometry of protons required for the synthesis of one ATP molecule and the supramolecular organisation of ATP synthases were examined. Since formation of supercomplexes also concerns other complexes of the respiratory chain, our work was directed to unravel this kind of organisation, e.g. of the OXPHOS supercomplex I1III2IV1, in terms of structure and function. Not only the large protein complexes or supercomplexes work as key players for biological energy conversion, but also small components as quinones which facilitate the transfer of electrons and protons. Therefore, their location in the membrane profile was determined by neutron diffraction. Physico-chemical features of the path of protons from the generators of the electrochemical gradient to the ATP synthase, as well as of their interaction with the membrane surface, could be elucidated by time-resolved absorption spectroscopy in combination with optical pH indicators. Diseases such as Alzheimer's dementia (AD) are triggered by perturbation of membranes and bioenergetics as demonstrated by our neutron scattering studies

    Coupled-Cluster Approach to Electron Correlations in the Two-Dimensional Hubbard Model

    Full text link
    We have studied electron correlations in the doped two-dimensional (2D) Hubbard model by using the coupled-cluster method (CCM) to investigate whether or not the method can be applied to correct the independent particle approximations actually used in ab-initio band calculations. The double excitation version of the CCM, implemented using the approximate coupled pair (ACP) method, account for most of the correlation energies of the 2D Hubbard model in the weak (U/tā‰ƒ1U/t \simeq 1) and the intermediate U/tU/t regions (U/tā‰ƒ4U/t \simeq 4). The error is always less than 1% there. The ACP approximation gets less accurate for large U/tU/t (U/tā‰ƒ8U/t \simeq 8) and/or near half-filling. Further incorporation of electron correlation effects is necessary in this region. The accuracy does not depend on the system size and the gap between the lowest unoccupied level and the highest occupied level due to the finite size effect. Hence, the CCM may be favorably applied to ab-initio band calculations on metals as well as semiconductors and insulators.Comment: RevTeX3.0, 4 pages, 4 figure
    • ā€¦
    corecore