62 research outputs found

    Effects of Initial Age Structure of Managed Norway Spruce Forest Area on Net Climate Impact of Using Forest Biomass for Energy

    Get PDF
    We investigated how the initial age structure of a managed, middle boreal (62A degrees N), Norway spruce-dominated (Picea abies L. Karst.) forest area affects the net climate impact of using forest biomass for energy. The model-based analysis used a gap-type forest ecosystem model linked to a life cycle assessment (LCA) tool. The net climate impact of energy biomass refers to the difference in annual net CO2 exchange between the biosystem using forest biomass (logging residues from final felling) and the fossil (reference) system using coal. In the simulations over the 80-year period, the alternative initial age structures of the forest areas were (i) skewed to the right (dominated by young stands), (ii) normally distributed (dominated by middle-aged stands), (iii) skewed to the left (dominated by mature stands), and (iv) evenly distributed (same share of different age classes). The effects of management on net climate impacts were studied using current recommendations as a baseline with a fixed rotation period of 80 years. In alternative management scenarios, the volume of the growing stock was maintained 20% higher over the rotation compared to the baseline, and/or nitrogen fertilization was used to enhance carbon sequestration. According to the results, the initial age structure of the forest area affected largely the net climate impact of using energy biomass over time. An initially right-skewed age structure produced the highest climate benefits over the 80-year simulation period, in contrast to the left-skewed age structure. Furthermore, management that enhanced carbon sequestration increased the potential of energy biomass to replace coal, reducing CO2 emissions and enhancing climate change mitigation.Peer reviewe

    Levels and Concentration Ratios of Polychlorinated Biphenyls and Polybrominated Diphenyl Ethers in Serum and Breast Milk in Japanese Mothers

    Get PDF
    Blood and/or breast milk have been used to assess human exposure to various environmental contaminants. Few studies have been available to compare the concentrations in one matrix with those in another. The goals of this study were to determine the current levels of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in Japanese women, with analysis of the effects of lifestyle and dietary habits on these levels, and to develop a quantitative structure–activity relationship (QSAR) with which to predict the ratio of serum concentration to breast milk concentration. We measured PBDEs and PCBs in 89 paired samples of serum and breast milk collected in four regions of Japan in 2005. The geometric means of the total concentrations of PBDE (13 congeners) in milk and serum were 1.56 and 2.89 ng/g lipid, respectively, whereas those of total PCBs (15 congeners) were 63.9 and 37.5 ng/g lipid, respectively. The major determinant of total PBDE concentration in serum and milk was the geographic area within Japan, whereas nursing duration was the major determinant of PCB concentration. BDE-209 was the most predominant PBDE congener in serum but not in milk. The excretion of BDE 209 in milk was lower than that of BDE 47 and BDE 153. QSAR analysis revealed that two parameters, calculated octanol/water partition and number of hydrogen-bond acceptors, were significant descriptors. During the first weeks of lactation, the predicted partitioning of PBDE and PCB congeners from serum to milk agreed with the observed values. However, the prediction became weaker after 10 weeks of nursing

    Toxic ignorance and right-to-know in biomonitoring results communication: a survey of scientists and study participants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exposure assessment has shifted from pollutant monitoring in air, soil, and water toward personal exposure measurements and biomonitoring. This trend along with the paucity of health effect data for many of the pollutants studied raise ethical and scientific challenges for reporting results to study participants.</p> <p>Methods</p> <p>We interviewed 26 individuals involved in biomonitoring studies, including academic scientists, scientists from environmental advocacy organizations, IRB officials, and study participants; observed meetings where stakeholders discussed these issues; and reviewed the relevant literature to assess emerging ethical, scientific, and policy debates about personal exposure assessment and biomonitoring, including public demand for information on the human health effects of chemical body burdens.</p> <p>Results</p> <p>We identify three frameworks for report-back in personal exposure studies: clinical ethics; community-based participatory research; and citizen science 'data judo.' The first approach emphasizes reporting results only when the health significance of exposures is known, while the latter two represent new communication strategies where study participants play a role in interpreting, disseminating, and leveraging results to promote community health. We identify five critical areas to consider in planning future biomonitoring studies.</p> <p>Conclusion</p> <p>Public deliberation about communication in personal exposure assessment research suggests that new forms of community-based research ethics and participatory scientific practice are emerging.</p
    corecore