7 research outputs found

    Volatile chemical emission as a weapon of rearguard action: a game-theoretic model of contest behavior

    Get PDF
    We use a game-theoretic model to explore whether volatile chemical (spiroacetal) emissions can serve as a weapon of rearguard action. Our basic model explores whether such emissions serve as a means of temporary withdrawal, preventing the winner of the current round of a contest from translating its victory into permanent possession of a contested resource. A variant of this model explores an alternative possibility, namely, that such emissions serve as a means of permanent retreat, attempting to prevent a winner from inflicting costs on a fleeing loser. Our results confirm that the underlying logic of either interpretation of weapons of rearguard action is sound; however, empirical observations on parasitoid wasp contests suggest that the more likely function of chemical weapons is to serve as a means of temporary withdrawal. While our work is centered around the particular biology of contest behavior in parasitoid wasps, it also provides the first contest model to explicitly consider self-inflicted damage costs, and thus responds to a recent call by empiricists for theory in this area

    Volatile chemical release by bethylid wasps: identity, phylogeny, anatomy and behaviour

    No full text
    International audienceThe structures of volatile chemicals released by parasitic wasps in the family Bethylidae are shown to correspond to the subfamily to which the species belong. Species in the Epyrinae release skatole (3-methylindole) and species in the Bethylinae release a spiroacetal (2-methyl-1,7-dioxaspiro [5.5]undecane): these compounds are chemically very different. The enantiomeric composition of the spiroacetal differs between congeneric species. Chemical release is a discrete event under the active control of both male and female wasps. Structural differences between the mandibular glands and intramandibular glands suggest the mandibular glands to be the source of released volatiles. Real-time mass spectrometry shows that the spiroacetal is released by Goniozus nephantidis females during dyadic resource contests, with release more common during more aggressive interactions. Chemical tagging with deuterium further shows that the volatile is released by the loser of an agonistic interaction and not the winner. The function of spiroacetal and skatole release by bethylids is discussed

    The impact of adult diet on parasitoid reproductive performance

    No full text
    corecore