3,042 research outputs found

    On the Role of Coastal Troughs in the Circulation of Warm Circumpolar Deep Water on Antarctic Shelves

    Get PDF
    Oceanic exchanges across the continental shelves of Antarctica play an important role in biological systems and the mass balance of ice sheets. The focus of this study is on the mechanisms responsible for the circulation of warm Circumpolar Deep Water (CDW) within troughs running perpendicular to the continental shelf. This is examined using process-oriented numerical experiments with an eddy-resolving (1 km) 3D ocean model that includes a static and thermodynamically active ice shelf. Three mechanisms that create a significant onshore flow within the trough are identified: 1) a deep onshore flow driven by the melt of the ice shelf, 2) interaction between the longshore mean flow and the trough, and 3) interaction between a Rossby wave along the shelf break and the trough. In each case the onshore flow is sufficient to maintain the warm temperatures underneath the ice shelf and basal melt rates of O(1 m yr−1). The third mechanism in particular reproduces several features revealed by moorings from Marguerite Trough (Bellingshausen Sea): the temperature maximum at middepth, a stronger intrusion on the downstream edge of the trough, and the appearance of warm anticyclonic anomalies every week. Sensitivity experiments highlight the need to properly resolve the small baroclinic radii of these regions (5 km on the shelf)-simulations at 3-km resolution cannot reproduce mechanism 3 and the associated heat transport

    On the relative importance of offshelf/onshelf drivers of variability in mCDW inventory on the Amundsen Shelf, Antarctica

    Get PDF
    Ice shelves in the Amundsen Sea (west Antarctica) are melting rapidly and may raise global sea levels substantially over the coming century through reduced buttressing. The high basal melt rates are associated with the presence of warm modified Circumpolar Deep Water (mCDW) that intrudes across the continental shelf and melts the floating portion of the ice sheet from its base near the grounding zone. How much mCDW is present on the continental shelf (its volume inventory) is thus thought to be a key proxy for the year-to-year variability in ice shelf melt rates. Over the past decade, the literature has linked this year-to-year variability to processes acting on the continental shelf (“onshelf”) as well as processes acting offshelf (or at the shelf break), but their relative influence remains unclear. Hydrographic surveys from 2007-2018 in the Dotson-Getz Trough reveal a smooth high/low/high pattern in annual mCDW inventories that could reflect processes acting offshelf, onshelf, or both. In the present work, a regional 3D sea ice-ice shelves-ocean model simulates the period 2006-2022 while using historical reanalysis meteorology but the same oceanic conditions offshelf throughout this period. The simulation effectively evaluates how much of the high/low/high pattern can be reproduced in absence of offshelf variability. Results indicate that the observed pattern is reproduced in the basal melt of Pine Island, Thwaites, Crosson, and Dotson ice shelves. The “low” represents a decrease of as much as ~25 Gt/yr for some of these ice shelves. While the “low” becomes apparent as early as summer 2012 for some ice shelves, the timing of the recovery varies. Ice shelves positioned in the east are the first ones to recover (circa mid-2016) and this recovery extends to Crosson and Dotson ~2 years later, reminiscent of the pathway of mCDW inside the Eastern Trough. The simulation supports the view that dynamical processes acting on the shelf (e.g. local Ekman pumping) can explain a substantial portion of the observed year-to-year variability

    Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1α : modulation by p38 MAPK

    Get PDF
    The transcriptional coactivator PPAR gamma coactivator 1 α (PGC-1α) is a key regulator of metabolic processes such as mitochondrial biogenesis and respiration in muscle and gluconeogenesis in liver. Reduced levels of PGC-1α in humans have been associated with type II diabetes. PGC-1α contains a negative regulatory domain that attenuates its transcriptional activity. This negative regulation is removed by phosphorylation of PGC-1α by p38 MAPK, an important kinase downstream of cytokine signaling in muscle and ÎČ-adrenergic signaling in brown fat. We describe here the identification of p160 myb binding protein (p160MBP) as a repressor of PGC-1α. The binding and repression of PGC-1α by p160MBP is disrupted by p38 MAPK phosphorylation of PGC-1α. Adenoviral expression of p160MBP in myoblasts strongly reduces PGC-1α's ability to stimulate mitochondrial respiration and the expression of the genes of the electron transport system. This repression does not require removal of PGC-1α from chromatin, suggesting that p160MBP is or recruits a direct transcriptional suppressor. Overall, these data indicate that p160MBP is a powerful negative regulator of PGC-1α function and provide a molecular mechanism for the activation of PGC-1α by p38 MAPK. The discovery of p160MBP as a PGC-1α regulator has important implications for the understanding of energy balance and diabetes

    Effects of reduced shoreline erosion on Chesapeake Bay water clarity

    Get PDF
    Shoreline erosion supplies sediments to estuaries and coastal waters, influencing water clarity and primary production. Globally, shoreline erosion sediment inputs are changing with anthropogenic alteration of coastlines in populated regions. Chesapeake Bay, a prime example of such a system where shoreline erosion accounts for a large proportion of sediments entering the estuary, serves here as a case study for investigating the effects of changing sediment inputs on water clarity. Long-term increases in shoreline armoring have contributed to decreased erosional sediment inputs to the estuary, changing the composition of suspended particles in surface waters. This study examined the impact of shoreline erosion on water clarity using a coupled hydrodynamic-biogeochemical model. Experiments were conducted to simulate realistic shoreline conditions representative of the early 2000s, increased shoreline erosion, and highly armored shorelines. Together, reduced shoreline erosion and the corresponding reduced rates of resuspension result in decreased concentrations of inorganic particles, improving water clarity particularly in the lower Bay and in dry years where/when riverine sediment influence is low. This clarity improvement relaxed light limitation, which increased organic matter production. Differences between the two extreme experiments revealed that in the mid-estuary in February-April, surface inorganic suspended sediment concentrations decreased 3-7 mg L-1, while organic suspended solids increased 1-3 mg L-1. The resulting increase in the organic-to-inorganic ratio often had opposite effects on clarity according to different metrics, improving clarity in mid-Bay central channel waters in terms of light attenuation depth, but simultaneously degrading clarity in terms of Secchi depth because the resulting increase in organic suspended solids decreased the water’s transparency. This incongruous water clarity effect, the spatial extent of which is defined here as an Organic Fog Zone, was present in February-April in all years studied, but occurred farther south in wet years

    Analysis of Iron Sources in Antarctic Continental Shelf Waters

    Get PDF
    Previous studies showed that satellite‐derived estimates of chlorophyll a in coastal polynyas over the Antarctic continental shelf are correlated with the basal melt rate of adjacent ice shelves. A 5‐km resolution ocean/sea ice/ice shelf model of the Southern Ocean is used to examine mechanisms that supply the limiting micronutrient iron to Antarctic continental shelf surface waters. Four sources of dissolved iron are simulated with independent tracers, assumptions about the source iron concentration for each tracer, and an idealized summer biological uptake. Iron from ice shelf melt provides about 6% of the total dissolved iron in surface waters. The contribution from deep sources of iron on the shelf (sediments and Circumpolar Deep Water) is much larger at 71%. The relative contribution of dissolved iron supply from basal melt driven overturning circulation within ice shelf cavities is heterogeneous around Antarctica, but at some locations, such as the Amundsen Sea, it is the primary mechanism for transporting deep dissolved iron to the surface. Correlations between satellite chlorophyll a in coastal polynyas around Antarctica and simulated dissolved iron confirm the previous suggestion that productivity of the polynyas is linked to the basal melt of adjacent ice shelves. This correlation is the result of upward advection or mixing of iron‐rich deep waters due to circulation changes driven by ice shelf melt, rather than a direct influence of iron released from melting ice shelves. This dependence highlights the potential vulnerability of coastal Antarctic ecosystems to changes in ice shelf basal melt rates

    Sensitivity of the Relationship Between Antarctic Ice Shelves and Iron Supply to Projected Changes in the Atmospheric Forcing

    Get PDF
    Upward advection or mixing of iron-rich deep waters due to circulation changes driven by the rate of basal ice shelf melt was shown to be a primary control on chlorophyll a production in coastal polynyas over the Antarctic continental shelf. Here, the effects of atmospheric changes projected in 2100 on this relationship were examined with a 5-km resolution ocean/sea ice/ice shelf model of the Southern Ocean with different simulated dissolved iron sources and idealized biological uptake. The atmospheric changes are added as idealized increments to the forcing. Inclusion of a poleward shift and strengthening of the winds, increased precipitation, and warmer atmospheric temperatures resulted in doubling of the heat advected onto the continental shelf and an 83% increase in the total Antarctic ice shelf basal melt. The total dissolved iron supply to the surface waters over the continental shelf increased by 62%, while the surface iron supply due just to basal melt driven overturning increased by 48%. However, even though the ice shelf driven contribution becomes less important to the total iron supply on average (29% of total), the ice shelf involvement becomes relatively even more important in some locations, such as the Amundsen and Bellingshausen Seas. The modified atmospheric conditions also produced a reduction in summer sea ice extent and a shoaling of the summer mixed layers. These simulated responses to projected changes suggest relief of light and nutrient limitation for phytoplankton blooms over the Antarctic continental shelf and perhaps an increase in annual production in years to come

    FlyBase 101 – the basics of navigating FlyBase

    Get PDF
    FlyBase (http://flybase.org) is the leading database and web portal for genetic and genomic information on the fruit fly Drosophila melanogaster and related fly species. Whether you use the fruit fly as an experimental system or want to apply Drosophila biological knowledge to another field of study, FlyBase can help you successfully navigate the wealth of available Drosophila data. Here, we review the FlyBase web site with novice and less-experienced users of FlyBase in mind and point out recent developments stemming from the availability of genome-wide data from the modENCODE project. The first section of this paper explains the organization of the web site and describes the report pages available on FlyBase, focusing on the most popular, the Gene Report. The next section introduces some of the search tools available on FlyBase, in particular, our heavily used and recently redesigned search tool QuickSearch, found on the FlyBase homepage. The final section concerns genomic data, including recent modENCODE (http://www.modencode.org) data, available through our Genome Browser, GBrowse

    In support of varying approaches to the study of variation

    Get PDF
    The acquisition of variation is a fundamental – but poorly understood – part of child language acquisition. We fully endorse Shin and Miller’s call for us to recognize the importance of this core issue, and argue that our understanding could be further enriched by greater reliance on convergent methods. As such, we implore researchers to consider perception as well as production data, and to consider acquisition across different domains and different populations of children
    • 

    corecore