17 research outputs found

    Real-time Control and Application With Self-Tuning PID-Type Fuzzy Adaptive Controller of An İnverted Pendulum

    No full text
    Purpose: This paper aims to keep the pendulum on the linear moving car vertically balanced and to bring the car to the equilibrium position with the designed controllers. Design/methodology/approach: As inverted pendulum systems are structurally unstable and nonlinear dynamic systems, they are important mechanisms used in engineering and technological developments to apply control techniques on these systems and to develop control algorithms, thus ensuring that the controllers designed for real-time balancing of these systems have certain performance criteria and the selection of each controller method according to performance criteria in the presence of destructive effects is very helpful in getting information about applying the methods to other systems. Findings: As a result, the designed controllers are implemented on a real-time and real system, and the performance results of the system are obtained graphically, compared and analyzed. Originality/value: In this study, motion equations of a linear inverted pendulum system are obtained, and classical and artificial intelligence adaptive control algorithms are designed and implemented for real-time control. Classic proportional-integral-derivative (PID) controller, fuzzy logic controller and PID-type Fuzzy adaptive controller methods are used to control the system. Self-tuning PID-type fuzzy adaptive controller was used first in the literature search and success results have been obtained. In this regard, the authors have the idea that this work is an innovative aspect of real-time with self-tuning PID-type fuzzy adaptive controller. © 2019, Emerald Publishing Limited.Firat University Scientific Research Projects Management UnitThis work was supported by Fırat University Scientific Research Projects (FUBAP) 2015, MF, within the scope of the project no: 13.15

    Research on Decoupling Control in Temperature and Humidity Control Systems

    No full text
    Part 1: Decision Support Systems, Intelligent Systems and Artificial Intelligence ApplicationsInternational audienceTemperature and humidity are two highly coupled variables in a control system, which need to be decoupled for effective control. Moreover, the coupling problem may get more severe and the two control loops may produce a strong interference to each other that can cause system instability when the humidity is measured by dry-and-wet bulb method. In this study, a control method based on fuzzy-neural-network was studied for solving the coupling problem. The shape of membership function can be adjusted in time by using a wavelet basis as the fuzzy membership function. An effective real-time decoupling control system for temperature and humidity could be realized by neural network fuzzy inference. Decoupling control tests were conducted in a control room with 1.6 m × 1.0 m × 4.0 m. The results show that the performance of the control system on dynamic response speed, stability, and anti-jamming have been improved after decoupling

    Control system for forced-air cooling of horticultural products Sistema de controle para o resfriamento com ar forçado de produtos hortícolas

    Get PDF
    This work is a study of the implementation of a classical controller using a tuning method referred to as IMC (Internal Model Control) and aimed at the reduction of electrical energy consumption by the appropriate relation between energy consumption and the cooling time with forced air. The supervisory system installed was able to manipulate the variable of frequency of the signal power of the exhaust fan engine (forced air module), to accelerate or decelerate the loss of heat from the product to be cooled by airflow variation that passes through the mass of the produce. The results demonstrated a reduction in energy consumption from 64% and an increase of only 8% in the cooling time to the system using PI/IMC (Proportional - Integral with IMC) tuning method compared with the system in its operating nominal condition. This PI/IMC control may be implemented directly in a frequency converter, without the need to purchase a computer or PLC (programmable logic controller) to run the dedicated application, increasing its economical viability.<br>Este trabalho consiste no estudo da implementação de um controlador clássico utilizando o método de sintonia denominado por Controle de Modelo Interno, visando à redução do consumo de energia elétrica que decorra na adequada relação entre este consumo e o tempo de resfriamento do processo de resfriamento com ar forçado de produtos hortícolas. Para isto, o sistema supervisório instalado manipulou a variável de frequência do sinal de alimentação do motor de indução trifásico do exaustor (módulo de ar forçado), para acelerar ou desacelerar a perda de calor do produto a ser resfriado por intermédio da variação da vazão de ar que perpassava a massa deste produto. Obteve-se como resultado uma redução no consumo de energia elétrica de 64% e um acréscimo de apenas 8% no tempo de resfriamento para o sistema utilizando um controle proporcional e integral associado ao método de sintonia promovido por Controle de Modelo Interno, quando comparado ao sistema em seu funcionamento nominal. Esta estratégia de controle é passível de ser implementada diretamente em alguns modelos de inversores de frequência, sem a necessidade de compra de um computador ou controlador lógico programável para executar o aplicativo dedicado, tornando-o mais viável economicamente
    corecore