16 research outputs found

    Molecular genetics of familial hypercholesterolemia in Israel-revisited

    Get PDF
    BACKGROUND AND AIMS: Familial hypercholesterolemia (FH) is an autosomal dominant disease caused by mutations in the genes for LDL receptor (LDLR), apolipoprotein B (APOB) and proprotein convertase subtilisin/kexin type9 (PCSK9). The purpose of the current investigation was to define the current spectrum of mutations causing FH in Israel. METHODS: New families were collected through the MEDPED (Make Early Diagnosis Prevent Early Death) FH program. Molecular analysis of the LDLR, PCSK9 and APOB genes was done using High Resolution Melt and direct sequencing in 67 index cases. A 6-SNP LDL-C gene score calculation for polygenic hypercholesterolaemia was done using TaqMan genotyping. RESULTS: Mean serum cholesterol was 7.48 ± 1.89 mmol/L and the mean serum LDL-C was 5.99 ± 1.89 mmol/L. Mutations in the LDLR and APOB gene were found in 24 cases (35.8%), with 16 in LDLR, none in PCSK9 and one, p.(R3527Q), in the APOB gene, which is the first APOB mutation carrier identified in the Israeli population. Of the LDLR mutations, two were novel; p.(E140A) and a promoter variant, c.-191C > A. The c.2479G > A p.(V827I) in exon 17 of the LDLR gene was found in 8 patients (33.3% of the mutations) with modestly elevated LDL-C, but also in a compound heterozygous patient with a clinical homozygous FH phenotype, consistent with this being a "mild" FH-causing variant. A significantly higher 6-SNP LDL-C score was found in mutation-negative cases compared with a normal Caucasian cohort (p = 0.03), confirming that polygenic inheritance of common LDL-C raising SNPs can produce an FH phenocopy. CONCLUSIONS: The results indicate a different spectrum of genetic causes of FH from that found previously, in concordance with the heterogeneous and changing origins of the Israeli population, and confirm that a polygenic cause is also contributing to the FH phenotype in Israel

    Familial hypercholesterolaemia in children and adolescents from 48 countries: a cross-sectional study

    Get PDF
    Background Approximately 450 000 children are born with familial hypercholesterolaemia worldwide every year, yet only 2·1% of adults with familial hypercholesterolaemia were diagnosed before age 18 years via current diagnostic approaches, which are derived from observations in adults. We aimed to characterise children and adolescents with heterozygous familial hypercholesterolaemia (HeFH) and understand current approaches to the identification and management of familial hypercholesterolaemia to inform future public health strategies. Methods For this cross-sectional study, we assessed children and adolescents younger than 18 years with a clinical or genetic diagnosis of HeFH at the time of entry into the Familial Hypercholesterolaemia Studies Collaboration (FHSC) registry between Oct 1, 2015, and Jan 31, 2021. Data in the registry were collected from 55 regional or national registries in 48 countries. Diagnoses relying on self-reported history of familial hypercholesterolaemia and suspected secondary hypercholesterolaemia were excluded from the registry; people with untreated LDL cholesterol (LDL-C) of at least 13·0 mmol/L were excluded from this study. Data were assessed overall and by WHO region, World Bank country income status, age, diagnostic criteria, and index-case status. The main outcome of this study was to assess current identification and management of children and adolescents with familial hypercholesterolaemia. Findings Of 63 093 individuals in the FHSC registry, 11 848 (18·8%) were children or adolescents younger than 18 years with HeFH and were included in this study; 5756 (50·2%) of 11 476 included individuals were female and 5720 (49·8%) were male. Sex data were missing for 372 (3·1%) of 11 848 individuals. Median age at registry entry was 9·6 years (IQR 5·8–13·2). 10 099 (89·9%) of 11 235 included individuals had a final genetically confirmed diagnosis of familial hypercholesterolaemia and 1136 (10·1%) had a clinical diagnosis. Genetically confirmed diagnosis data or clinical diagnosis data were missing for 613 (5·2%) of 11 848 individuals. Genetic diagnosis was more common in children and adolescents from high-income countries (9427 [92·4%] of 10 202) than in children and adolescents from non-high-income countries (199 [48·0%] of 415). 3414 (31·6%) of 10 804 children or adolescents were index cases. Familial-hypercholesterolaemia-related physical signs, cardiovascular risk factors, and cardiovascular disease were uncommon, but were more common in non-high-income countries. 7557 (72·4%) of 10 428 included children or adolescents were not taking lipid-lowering medication (LLM) and had a median LDL-C of 5·00 mmol/L (IQR 4·05–6·08). Compared with genetic diagnosis, the use of unadapted clinical criteria intended for use in adults and reliant on more extreme phenotypes could result in 50–75% of children and adolescents with familial hypercholesterolaemia not being identified. Interpretation Clinical characteristics observed in adults with familial hypercholesterolaemia are uncommon in children and adolescents with familial hypercholesterolaemia, hence detection in this age group relies on measurement of LDL-C and genetic confirmation. Where genetic testing is unavailable, increased availability and use of LDL-C measurements in the first few years of life could help reduce the current gap between prevalence and detection, enabling increased use of combination LLM to reach recommended LDL-C targets early in life. Funding Pfizer, Amgen, Merck Sharp & Dohme, Sanofi–Aventis, Daiichi Sankyo, and Regeneron

    Familial hypercholesterolaemia in children and adolescents from 48 countries: a cross-sectional study

    Get PDF
    Background: Approximately 450 000 children are born with familial hypercholesterolaemia worldwide every year, yet only 2·1% of adults with familial hypercholesterolaemia were diagnosed before age 18 years via current diagnostic approaches, which are derived from observations in adults. We aimed to characterise children and adolescents with heterozygous familial hypercholesterolaemia (HeFH) and understand current approaches to the identification and management of familial hypercholesterolaemia to inform future public health strategies. Methods: For this cross-sectional study, we assessed children and adolescents younger than 18 years with a clinical or genetic diagnosis of HeFH at the time of entry into the Familial Hypercholesterolaemia Studies Collaboration (FHSC) registry between Oct 1, 2015, and Jan 31, 2021. Data in the registry were collected from 55 regional or national registries in 48 countries. Diagnoses relying on self-reported history of familial hypercholesterolaemia and suspected secondary hypercholesterolaemia were excluded from the registry; people with untreated LDL cholesterol (LDL-C) of at least 13·0 mmol/L were excluded from this study. Data were assessed overall and by WHO region, World Bank country income status, age, diagnostic criteria, and index-case status. The main outcome of this study was to assess current identification and management of children and adolescents with familial hypercholesterolaemia. Findings: Of 63 093 individuals in the FHSC registry, 11 848 (18·8%) were children or adolescents younger than 18 years with HeFH and were included in this study; 5756 (50·2%) of 11 476 included individuals were female and 5720 (49·8%) were male. Sex data were missing for 372 (3·1%) of 11 848 individuals. Median age at registry entry was 9·6 years (IQR 5·8-13·2). 10 099 (89·9%) of 11 235 included individuals had a final genetically confirmed diagnosis of familial hypercholesterolaemia and 1136 (10·1%) had a clinical diagnosis. Genetically confirmed diagnosis data or clinical diagnosis data were missing for 613 (5·2%) of 11 848 individuals. Genetic diagnosis was more common in children and adolescents from high-income countries (9427 [92·4%] of 10 202) than in children and adolescents from non-high-income countries (199 [48·0%] of 415). 3414 (31·6%) of 10 804 children or adolescents were index cases. Familial-hypercholesterolaemia-related physical signs, cardiovascular risk factors, and cardiovascular disease were uncommon, but were more common in non-high-income countries. 7557 (72·4%) of 10 428 included children or adolescents were not taking lipid-lowering medication (LLM) and had a median LDL-C of 5·00 mmol/L (IQR 4·05-6·08). Compared with genetic diagnosis, the use of unadapted clinical criteria intended for use in adults and reliant on more extreme phenotypes could result in 50-75% of children and adolescents with familial hypercholesterolaemia not being identified. Interpretation: Clinical characteristics observed in adults with familial hypercholesterolaemia are uncommon in children and adolescents with familial hypercholesterolaemia, hence detection in this age group relies on measurement of LDL-C and genetic confirmation. Where genetic testing is unavailable, increased availability and use of LDL-C measurements in the first few years of life could help reduce the current gap between prevalence and detection, enabling increased use of combination LLM to reach recommended LDL-C targets early in life

    Taq1B CETP polymorphism, plasma CETP, lipoproteins, apolipoproteins and sex differences in a Jewish population sample characterized by low HDL-cholesterol

    No full text
    Abstract Mean high-density lipoprotein cholesterol (HDL-C) concentrations are low in the Jewish population of Israel. With this in mind we assessed the association of the Taq1B CETP polymorphism, plasma CETP mass and plasma lipid, lipoprotein and apolipoprotein concentrations in a sample of 884 Jerusalem residents aged 28 -32. The allele frequency (0.435 90.017(S.E.)) is similar to that reported elsewhere. There was a strong (apparently codominant) association of the Taq1 B allele with plasma CETP in both sexes, and an inverse association with HDL-C and apo A-1, significant in women and undiminished upon adjustment for plasma CETP. There was evidence in this population for an admixture of two plasma CETP distributions, with 9% belonging to a distribution with the higher mean, pointing to a possible major gene effect. Mean plasma CETP was higher in women than men. Plasma CETP was inversely associated with HDL-C in men but not in women (PB 0.05 for the sex difference, multivariate analysis), inversely related to the HDL-C/apo A-1 ratio in men and positively related in women (PB 0.005 for the sex difference), and was positively associated with total cholesterol (TC) and low-density lipoprotein cholesterol in both sexes, and with the TC/HDL-C ratio and apo B in men alone. The sex differences may reflect dissimilarities in the regulatory function of CETP in lipid exchange. The absence of an unusual allele frequency of the Taq1B CETP polymorphism and its relatively modest association with HDL-C argue against an important role for this or strongly linked sites in determining the low population levels of HDL-C in Israel

    Recent origin and spread of a common Lithuanian mutation, G197del LDLR, causing familial hypercholesterolemia: Positive selection is not always necessary to account for disease incidence among Ashkenazi Jews.

    No full text
    GesondheidswetenskappeVerloskunde En GinekologiePlease help us populate SUNScholar with the post print version of this article. It can be e-mailed to: [email protected]

    A cholesterol-lowering gene maps to chromosome 13q

    No full text
    A cholesterol-lowering gene has been postulated from familial hypercholesterolemia (FH) families having heterozygous persons with normal LDL levels and homozygous individuals with LDL levels similar to those in persons with heterozygous FH. We studied such a family with FH that also had members without FH and with lower-than-normal LDL levels. We performed linkage analyses and identified a locus at 13q, defined by markers D13S156 and D13S158. FASTLINK and GENE-HUNTER yielded LOD scores > 5 and > 4, respectively, whereas an affected-sib-pair analysis gave a peak multipoint LOD score of 4.8, corresponding to a P value of 1.26 x 10 -6. A multipoint quantitative-trait-locus (QTL) linkage analysis with maximum-likelihood binomial QTL verified this locus as a QTL for LDL levels. To test the relevance of this QTL in an independent normal population, we studied MZ and DZ twin subjects. An MZ-DZ comparison confirmed genetic variance with regard to lipid concentrations. We then performed an identity-by-descent linkage analysis on the DZ twins, with markers at the 13q locus. We found strong evidence for linkage at this locus with LDL (P < .0002), HDL (P < .004), total cholesterol (P < .0002), and body-mass index (P < .0001). These data provide support for the existence of a new gene influencing lipid concentrations in humans

    Overview of the current status of familial hypercholesterolaemia care in over 60 countries - The EAS Familial Hypercholesterolaemia Studies Collaboration (FHSC)

    No full text
    Background and aims: Management of familial hypercholesterolaemia (FH) may vary across different settings due to factors related to population characteristics, practice, resources and/or policies. We conducted a survey among the worldwide network of EAS FHSC Lead Investigators to provide an overview of FH status in different countries. Methods: Lead Investigators from countries formally involved in the EAS FHSC by mid-May 2018 were invited to provide a brief report on FH status in their countries, including available information, programmes, initiatives, and management. Results: 63 countries provided reports. Data on FH prevalence are lacking in most countries. Where available, data tend to align with recent estimates, suggesting a higher frequency than that traditionally considered. Low rates of FH detection are reported across all regions. National registries and education programmes to improve FH awareness/knowledge are a recognised priority, but funding is often lacking. In most countries, diagnosis primarily relies on the Dutch Lipid Clinics Network criteria. Although available in many countries, genetic testing is not widely implemented (frequent cost issues). There are only a few national official government programmes for FH. Under-treatment is an issue. FH therapy is not universally reimbursed. PCSK9-inhibitors are available in 3c2/3 countries. Lipoprotein-apheresis is offered in 3c60% countries, although access is limited. Conclusions: FH is a recognised public health concern. Management varies widely across countries, with overall suboptimal identification and under-treatment. Efforts and initiatives to improve FH knowledge and management are underway, including development of national registries, but support, particularly from health authorities, and better funding are greatly needed

    Overview of the current status of familial hypercholesterolaemia care in over 60 countries - The EAS Familial Hypercholesterolaemia Studies Collaboration (FHSC)

    No full text
    Background and aims: Management of familial hypercholesterolaemia (FH) may vary across different settings due to factors related to population characteristics, practice, resources and/or policies. We conducted a survey among the worldwide network of EAS FHSC Lead Investigators to provide an overview of FH status in different countries. Methods: Lead Investigators from countries formally involved in the EAS FHSC by mid-May 2018 were invited to provide a brief report on FH status in their countries, including available information, programmes, initiatives, and management. Results: 63 countries provided reports. Data on FH prevalence are lacking in most countries. Where available, data tend to align with recent estimates, suggesting a higher frequency than that traditionally considered. Low rates of FH detection are reported across all regions. National registries and education programmes to improve FH awareness/knowledge are a recognised priority, but funding is often lacking. In most countries, diagnosis primarily relies on the Dutch Lipid Clinics Network criteria. Although available in many countries, genetic testing is not widely implemented (frequent cost issues). There are only a few national official government programmes for FH. Under-treatment is an issue. FH therapy is not universally reimbursed. PCSK9-inhibitors are available in ∼2/3 countries. Lipoprotein-apheresis is offered in ∼60% countries, although access is limited. Conclusions: FH is a recognised public health concern. Management varies widely across countries, with overall suboptimal identification and under-treatment. Efforts and initiatives to improve FH knowledge and management are underway, including development of national registries, but support, particularly from health authorities, and better funding are greatly needed. © 2018 Elsevier B.V
    corecore