354 research outputs found

    Full-Coupled Channel Approach to Doubly Strange ss-Shell Hypernuclei

    Get PDF
    We describe {\it ab initio} calculations of doubly strange, S=−2S=-2, ss-shell hypernuclei (ΛΛ4^4_{\Lambda\Lambda}H, ΛΛ5^5_{\Lambda\Lambda}H, ΛΛ5^5_{\Lambda\Lambda}He and ΛΛ6^6_{\Lambda\Lambda}He) as a first attempt to explore the few-body problem of the {\it full}-coupled channel scheme for these systems. The wave function includes ΛΛ\Lambda\Lambda, ΛΣ\Lambda\Sigma, NΞN\Xi and ÎŁÎŁ\Sigma\Sigma channels. Minnesota NNNN, D2â€Č^\prime YNYN, and simulated YYYY potentials based on the Nijmegen hard-core model, are used. Bound state solutions of these systems are obtained. We find that a set of phenomenological B8B8B_8B_8 interactions among the octet baryons in S=0,−1S=0, -1 and -2 sectors, which is consistent with all of the available experimental binding energies of S=0,−1S=0, -1 and -2 ss-shell (hyper-)nuclei, can predict a particle stable bound state of ΛΛ4^4_{\Lambda\Lambda}H. For ΛΛ5^5_{\Lambda\Lambda}H and ΛΛ5^5_{\Lambda\Lambda}He, ΛN−ΣN\Lambda N-\Sigma N and ΞN−ΛΣ\Xi N-\Lambda\Sigma potentials enhance the net ΛΛ−NΞ\Lambda\Lambda-N\Xi coupling, and a large Ξ\Xi probability is obtained even for a weaker ΛΛ−NΞ\Lambda\Lambda-N\Xi potential.Comment: 4 pages, 1 figur

    Lambda Lambda-XiN Coupling Effects in Light Hypernuclei

    Full text link
    The significance of ΛΛ\Lambda\Lambda-Ξ\XiN coupling in double-Λ\Lambda hypernuclei has been studied. The Pauli suppression effect due to this coupling in ΛΛ6^6_{\Lambda\Lambda}He has been found to be 0.43 MeV for the coupling strength of the NSC97e potential. This indicates that the free-space ΛΛ\Lambda\Lambda interaction is stronger by about 5∘5^{\circ} phase shift than that deduced from the empirical data of ΛΛ6^6_{\Lambda\Lambda}He without including the Pauli suppression effect. In ΛΛ5^5_{\Lambda\Lambda}He and ΛΛ5^5_{\Lambda\Lambda}H, an attractive term arising from ΛΛ\Lambda\Lambda-Ξ\XiN conversion is enhanced by the formation of an alpha particle in intermediate Ξ\Xi states. According to this enhancement, we have found that the ΛΛ\Lambda\Lambda binding energy (ΔBΛΛ\Delta B_{\Lambda\Lambda}) of ΛΛ5^5_{\Lambda\Lambda}He is about 0.27 MeV larger than that of ΛΛ6^6_{\Lambda\Lambda}He for the NSC97e coupling strength. This finding deviates from a general picture that the heavier is the core nucleus, the larger is ΔBΛΛ\Delta B_{\Lambda\Lambda}.Comment: 16 pages with 2 figure

    Exclusive K+K^+ production in proton-nucleus collisions

    Full text link
    The exclusive K+K^+ meson production in a proton-nucleus collision, leading to two body final states, is investigated in a fully covariant two-nucleon model based on the effective Lagrangian picture. The explicit kaon production vertex is described via creation, propagation and decay into relevant channel of N∗N^*(1650), N∗N^*(1710) and N∗N^*(1720) intermediate baryonic states in the initial collision of the projectile nucleon with one of its target counterparts which is modeled by the one-pion exchange process. The calculated cross sections show strong sensitivity to the medium effects on pion propagator and to the final hypernuclear state excited in the reaction.Comment: Two new figures, version accepted for publication by Phys. Rev.

    Ab initio approach to s-shell hypernuclei 3H_Lambda, 4H_Lambda, 4He_Lambda and 5He_Lambda with a Lambda N-Sigma N interaction

    Full text link
    Variational calculations for s-shell hypernuclei are performed by explicitly including Σ\Sigma degrees of freedom. Four sets of YN interactions (SC97d(S), SC97e(S), SC97f(S) and SC89(S)) are used. The bound-state solution of Λ5_\Lambda^5He is obtained and a large energy expectation value of the tensor ΛN−ΣN\Lambda N-\Sigma N transition part is found. The internal energy of the 4^4He subsystem is strongly affected by the presence of a Λ\Lambda particle with the strong tensor ΛN−ΣN\Lambda N-\Sigma N transition potential.Comment: Phys. Rev. Lett. 89, 142504 (2002

    Possibility of \Lambda\Lambda pairing and its dependence on background density in relativistic Hartree-Bogoliubov model

    Full text link
    We calculate a \Lambda\Lambda pairing gap in binary mixed matter of nucleons and \Lambda hyperons within the relativistic Hartree-Bogoliubov model. Lambda hyperons to be paired up are immersed in background nucleons in a normal state. The gap is calculated with a one-boson-exchange interaction obtained from a relativistic Lagrangian. It is found that at background density \rho_{N}=2.5\rho_{0} the \Lambda\Lambda pairing gap is very small, and that denser background makes it rapidly suppressed. This result suggests a mechanism, specific to mixed matter dealt with relativistic models, of its dependence on the nucleon density. An effect of weaker \Lambda\Lambda attraction on the gap is also examined in connection with revised information of the \Lambda\Lambda interaction.Comment: 8 pages, 6 figures, REVTeX 4; substantially rewritten, emphasis is put on the LL pairing in pure neutron matte

    Variational calculations of the Λ\Lambda-seperation energy of the Λ17_{\Lambda}^{17}O hypernucleus

    Full text link
    Variational Monte Carlo calculations have been made for the Λ17_{ \Lambda}^{17}O hypernucleus using realistic two- and three-baryon interactions. A two pion exchange potential with spin- and space-exchange components is used for the Λ\LambdaN potential. Three-body two-pion exchange and strongly repulsive dispersive Λ\LambdaNN interactions are also included. The trial wave function is constructed from pair- and triplet-correlation operators acting on a single particle determinant. These operators consist of central, spin, isospin, tensor and three- baryon potential components. A cluster Monte Carlo method is developed for noncentral correlations and is used with up to four-baryon clusters in our calculations. The three-baryon Λ\LambdaNN force is discussed.Comment: 24 pages, 2 figs available by fax., for publication in Phys. Rev.

    Phenomenological Lambda-Nuclear Interactions

    Full text link
    Variational Monte Carlo calculations for Λ4H{_{\Lambda}^4}H (ground and excited states) and Λ5He{_{\Lambda}^5}He are performed to decipher information on Λ{\Lambda}-nuclear interactions. Appropriate operatorial nuclear and Λ{\Lambda}-nuclear correlations have been incorporated to minimize the expectation values of the energies. We use the Argonne υ18\upsilon_{18} two-body NN along with the Urbana IX three-body NNN interactions. The study demonstrates that a large part of the splitting energy in Λ4H{_{\Lambda}^4}H (0+−1+0^+-1^+) is due to the three-body Λ{\Lambda} NN forces. Λ17O_{\Lambda}^{17}O hypernucleus is analyzed using the {\it s}-shell results. Λ\Lambda binding to nuclear matter is calculated within the variational framework using the Fermi-Hypernetted-Chain technique. There is a need to correctly incorporate the three-body Λ{\Lambda} NN correlations for Λ\Lambda binding to nuclear matter.Comment: 18 pages (TeX), 2 figure

    A Realistic Description of Nucleon-Nucleon and Hyperon-Nucleon Interactions in the SU_6 Quark Model

    Get PDF
    We upgrade a SU_6 quark-model description for the nucleon-nucleon and hyperon-nucleon interactions by improving the effective meson-exchange potentials acting between quarks. For the scalar- and vector-meson exchanges, the momentum-dependent higher-order term is incorporated to reduce the attractive effect of the central interaction at higher energies. The single-particle potentials of the nucleon and Lambda, predicted by the G-matrix calculation, now have proper repulsive behavior in the momentum region q_1=5 - 20 fm^-1. A moderate contribution of the spin-orbit interaction from the scalar-meson exchange is also included. As to the vector mesons, a dominant contribution is the quadratic spin-orbit force generated from the rho-meson exchange. The nucleon-nucleon phase shifts at the non-relativistic energies up to T_lab=350 MeV are greatly improved especially for the 3E states. The low-energy observables of the nucleon-nucleon and the hyperon-nucleon interactions are also reexamined. The isospin symmetry breaking and the Coulomb effect are properly incorporated in the particle basis. The essential feature of the Lambda N - Sigma N coupling is qualitatively similar to that obtained from the previous models. The nuclear saturation properties and the single-particle potentials of the nucleon, Lambda and Sigma are reexamined through the G-matrix calculation. The single-particle potential of the Sigma hyperon is weakly repulsive in symmetric nuclear matter. The single-particle spin-orbit strength for the Lambda particle is very small, in comparison with that of the nucleons, due to the strong antisymmetric spin-orbit force generated from the Fermi-Breit interaction.Comment: Revtex v2.09, 69 pages with 25 figure
    • 

    corecore