research

Full-Coupled Channel Approach to Doubly Strange ss-Shell Hypernuclei

Abstract

We describe {\it ab initio} calculations of doubly strange, S=2S=-2, ss-shell hypernuclei (ΛΛ4^4_{\Lambda\Lambda}H, ΛΛ5^5_{\Lambda\Lambda}H, ΛΛ5^5_{\Lambda\Lambda}He and ΛΛ6^6_{\Lambda\Lambda}He) as a first attempt to explore the few-body problem of the {\it full}-coupled channel scheme for these systems. The wave function includes ΛΛ\Lambda\Lambda, ΛΣ\Lambda\Sigma, NΞN\Xi and ΣΣ\Sigma\Sigma channels. Minnesota NNNN, D2^\prime YNYN, and simulated YYYY potentials based on the Nijmegen hard-core model, are used. Bound state solutions of these systems are obtained. We find that a set of phenomenological B8B8B_8B_8 interactions among the octet baryons in S=0,1S=0, -1 and -2 sectors, which is consistent with all of the available experimental binding energies of S=0,1S=0, -1 and -2 ss-shell (hyper-)nuclei, can predict a particle stable bound state of ΛΛ4^4_{\Lambda\Lambda}H. For ΛΛ5^5_{\Lambda\Lambda}H and ΛΛ5^5_{\Lambda\Lambda}He, ΛNΣN\Lambda N-\Sigma N and ΞNΛΣ\Xi N-\Lambda\Sigma potentials enhance the net ΛΛNΞ\Lambda\Lambda-N\Xi coupling, and a large Ξ\Xi probability is obtained even for a weaker ΛΛNΞ\Lambda\Lambda-N\Xi potential.Comment: 4 pages, 1 figur

    Similar works