380 research outputs found

    Introduction of carrier interference to spread spectrum multiple access

    Get PDF
    This paper introduces a new scheme for spread spectrum multiple access. Like MC-CDMA, this scheme accomplishes spectral spreading by transmission of identical data over N carriers simultaneously. However, unlike any existing CDMA technique to date, this method supports user orthogonality not through the use of spreading codes (based on PN sequences), but rather through multiple carrier interference. Specifically, in this novel method, aptly named CIMA (carrier interference multiple access), the interference of multiple carriers enables user orthogonality or pseudo orthogonality based on user positioning in time. It is shown that CIMA supports simplified receiver structures for AWGN channels, and offers performance benefits in AWGN and fading environment

    Activation of Syk protein tyrosine kinase through interaction with integrin Ξ² cytoplasmic domains

    Get PDF
    AbstractSyk protein tyrosine kinase is essential for immune system development and function [1] and for the maintenance of vascular integrity [2, 3]. In leukocytes, Syk is activated by binding to diphosphorylated immune receptor tyrosine-based activation motifs (pITAMs) [1]. Syk can also be activated by integrin adhesion receptors [4, 5], but the mechanism of its activation is unknown. Here we report a novel mechanism for Syk's recruitment and activation, which requires that Syk bind to the integrin Ξ²3 cytoplasmic tail. We found that both Syk and the related kinase ZAP-70 bound the Ξ²3 cytoplasmic tail through their tandem SH2 domains. However, unlike Syk binding to pITAMs, this interaction was independent of tyrosine phosphorylation and of the phosphotyrosine binding function of Syk's tandem SH2 domains. Deletion of the four C-terminal residues of the Ξ²3 cytoplasmic tail [Ξ²3(759X)] decreased Syk binding and disrupted its physical association with integrin Ξ±IIbΞ²3. Furthermore, cells expressing Ξ±IIbΞ²3(759X) failed to exhibit Syk activation or lamellipodia formation upon cell adhesion to the Ξ±IIbΞ²3 ligand, fibrinogen. In contrast, FAK phosphorylation and focal adhesion formation were unimpaired by this mutation. Thus, the direct binding of Syk kinase to the integrin Ξ²3 cytoplasmic tail is a novel and functionally significant mechanism for the regulation of this important non-receptor tyrosine kinase

    Coordinate interactions of Csk, Src, and Syk kinases with Ξ±IIbΞ²3 initiate integrin signaling to the cytoskeleton

    Get PDF
    Integrins regulate cell adhesion and motility through tyrosine kinases, but initiation of this process is poorly understood. We find here that Src associates constitutively with integrin Ξ±IIbΞ²3 in platelets. Platelet adhesion to fibrinogen caused a rapid increase in Ξ±IIbΞ²3-associated Src activity, and active Src localized to filopodia and cell edges. Csk, which negatively regulates Src by phosphorylating Tyr-529, was also constitutively associated with Ξ±IIbΞ²3. However, fibrinogen binding caused Csk to dissociate from Ξ±IIbΞ²3, concomitant with dephosphorylation of Src Tyr-529 and phosphorylation of Src activation loop Tyr-418. In contrast to the behavior of Src and Csk, Syk was associated with Ξ±IIbΞ²3 only after fibrinogen binding. Platelets multiply deficient in Src, Hck, Fgr, and Lyn, or normal platelets treated with Src kinase inhibitors failed to spread on fibrinogen. Inhibition of Src kinases blocked Syk activation and inhibited phosphorylation of Syk substrates (Vav1, Vav3, SLP-76) implicated in cytoskeletal regulation. Syk-deficient platelets exhibited Src activation upon adhesion to fibrinogen, but no spreading or phosphorylation of Vav1, Vav3, and SLP-76. These studies establish that platelet spreading on fibrinogen requires sequential activation of Src and Syk in proximity to Ξ±IIbΞ²3, thus providing a paradigm for initiation of integrin signaling to the actin cytoskeleton

    Differential Requirement for LAT and SLP-76 in GPVI versus T Cell Receptor Signaling

    Get PDF
    Mice deficient in the adaptor Src homology 2 domain-containing leukocyte phosphoprotein of 76 kD (SLP-76) exhibit a bleeding disorder and lack T cells. Linker for activation of T cells (LAT)-deficient mice exhibit a similar T cell phenotype, but show no signs of hemorrhage. Both SLP-76 and LAT are important for optimal platelet activation downstream of the collagen receptor, GPVI. In addition, SLP-76 is involved in signaling mediated by integrin Ξ±IIbΞ²3. Because SLP-76 and LAT function coordinately in T cell signal transduction, yet their roles appear to differ in hemostasis, we investigated in detail the functional consequences of SLP-76 and LAT deficiencies in platelets. Previously we have shown that LATβˆ’/βˆ’ platelets exhibit defective responses to the GPVI-specific agonist, collagen-related peptide (CRP). Consistent with this, we find that surface expression of P-selectin in response to high concentrations of GPVI ligands is reduced in both LAT- and SLP-76–deficient platelets. However, platelets from LATβˆ’/βˆ’ mice, but not SLP-76βˆ’/βˆ’ mice, aggregate normally in response to high concentrations of collagen and convulxin. Additionally, unlike SLP-76, LAT is not tyrosine phosphorylated after fibrinogen binding to integrin Ξ±IIbΞ²3, and collagen-stimulated platelets deficient in LAT spread normally on fibrinogen-coated surfaces. Together, these findings indicate that while LAT and SLP-76 are equally required for signaling via the T cell antigen receptor (TCR) and pre-TCR, platelet activation downstream of GPVI and Ξ±IIbΞ²3 shows a much greater dependency on SLP-76 than LAT

    The Structural Features of Trask That Mediate Its Anti-Adhesive Functions

    Get PDF
    Trask/CDCP1 is a transmembrane protein with a large extracellular and small intracellular domains. The intracellular domain (ICD) undergoes tyrosine phosphorylation by Src kinases during anchorage loss and, when phosphorylated, Trask functions to inhibit cell adhesion. The extracellular domain (ECD) undergoes proteolytic cleavage by serine proteases, although the functional significance of this remains unknown. There is conflicting evidence regarding whether it functions to signal the phosphorylation of the ICD. To better define the structural determinants that mediate the anti-adhesive functions of Trask, we generated a series of deletion mutants of Trask and expressed them in tet-inducible cell models to define the structural elements involved in cell adhesion signaling. We find that the ECD is dispensable for the phosphorylation of the ICD or for the inhibition of cell adhesion. The anti-adhesive functions of Trask are entirely embodied within its ICD and are specifically due to tyrosine phosphorylation of the ICD as this function is completely lost in a phosphorylation-defective tyrosine-phenylalanine mutant. Both full length and cleaved ECDs are fully capable of phosphorylation and undergo phosphorylation during anchorage loss and cleavage is not an upstream signal for ICD phosphorylation. These data establish that the anti-adhesive functions of Trask are mediated entirely through its tyrosine phosphorylation. It remains to be defined what role, if any, the Trask ECD plays in its adhesion functions

    Kindlins, Integrin Activation and the Regulation of Talin Recruitment to Ξ±IIbΞ²3

    Get PDF
    Talins and kindlins bind to the integrin Ξ²3 cytoplasmic tail and both are required for effective activation of integrin Ξ±IIbΞ²3 and resulting high-affinity ligand binding in platelets. However, binding of the talin head domain alone to Ξ²3 is sufficient to activate purified integrin Ξ±IIbΞ²3 in vitro. Since talin is localized to the cytoplasm of unstimulated platelets, its re-localization to the plasma membrane and to the integrin is required for activation. Here we explored the mechanism whereby kindlins function as integrin co-activators. To test whether kindlins regulate talin recruitment to plasma membranes and to Ξ±IIbΞ²3, full-length talin and kindlin recruitment to Ξ²3 was studied using a reconstructed CHO cell model system that recapitulates agonist-induced Ξ±IIbΞ²3 activation. Over-expression of kindlin-2, the endogenous kindlin isoform in CHO cells, promoted PAR1-mediated and talin-dependent ligand binding. In contrast, shRNA knockdown of kindlin-2 inhibited ligand binding. However, depletion of kindlin-2 by shRNA did not affect talin recruitment to the plasma membrane, as assessed by sub-cellular fractionation, and neither over-expression of kindlins nor depletion of kindlin-2 affected talin interaction with Ξ±IIbΞ²3 in living cells, as monitored by bimolecular fluorescence complementation. Furthermore, talin failed to promote kindlin-2 association with Ξ±IIbΞ²3 in CHO cells. In addition, purified talin and kindlin-3, the kindlin isoform expressed in platelets, failed to promote each other's binding to the Ξ²3 cytoplasmic tail in vitro. Thus, kindlins do not promote initial talin recruitment to Ξ±IIbΞ²3, suggesting that they co-activate integrin through a mechanism independent of recruitment

    G12/13 Signaling Pathways Substitute for Integrin Ξ±IIbΞ²3-Signaling for Thromboxane Generation in Platelets

    Get PDF
    We have previously shown that ADP-induced TXA(2) generation requires signaling from Ξ±IIbΞ²3 integrin in platelets. Here we observed that, unlike ADP, protease-activated receptor (PAR)-mediated TXA(2) generation occurs independently of Ξ±IIbΞ²3. PAR agonists, but not ADP, activate G(12/13) signaling pathways. Hence, we evaluated the role of these pathways in TXA(2) generation.Inhibition of ADP-induced thromboxane generation by fibrinogen receptor antagonist SC57101 was rescued by co-stimulation of G(12/13) pathways with YFLLRNP. This observation suggested an existence of a common signaling effector downstream of integrins and G(12/13) pathways. Hence, we evaluated role of three potential tyrosine kinases; c-Src, Syk and FAK (Focal Adhesion Kinase) that are known to be activated by integrins. c-Src and Syk kinase did not play a role in ADP-induced functional responses in platelets. Selective activation of G(12/13) pathways resulted in the activation of FAK, in the absence of integrin signaling. Interestingly, Ξ±IIbΞ²3-mediated FAK activation occurred in a Src family kinase (SFK)-independent manner whereas G(12/13) pathway caused FAK activation in a SFK and RhoA-dependent manner. A FAK selective inhibitor TAE-226, blocked TXA(2) generation. However, in comparison to WT mice, Pf4-Cre/Fak-Floxed mice did not show any difference in platelet TXA(2) generation.Therefore, we conclude that differential activation of FAK occurs downstream of Integrins and G(12/13) pathways. However, the common effector molecule, possibly a tyrosine kinase downstream of integrins and G(12/13) pathways contributing to TXA(2) generation in platelets remains elusive

    MMP-9, uPAR and Cathepsin B Silencing Downregulate Integrins in Human Glioma Xenograft Cells In Vitro and In Vivo in Nude Mice

    Get PDF
    Involvement of MMP-9, uPAR and cathepsin B in adhesion, migration, invasion, proliferation, metastasis and tumor growth has been well established. In the present study, MMP-9, uPAR and cathepsin B genes were downregulated in glioma xenograft cells using shRNA plasmid constructs and we evaluated the involvement of integrins and changes in their adhesion, migration and invasive potential.MMP-9, uPAR and cathepsin B single shRNA plasmid constructs were used to downregulate these molecules in xenograft cells. We also used MMP-9/uPAR and MMP-9/cathepsin B bicistronic constructs to evaluate the cumulative effects. MMP-9, uPAR and cathepsin B downregulation significantly inhibits xenograft cell adhesion to several extracellular matrix proteins. Treatment with MMP-9, uPAR and cathepsin B shRNA of xenografts led to the downregulation of several alpha and beta integrins. In all the assays, we noticed more prominent effects with the bicistronic plasmid constructs when compared to the single plasmid shRNA constructs. FACS analysis demonstrated the expression of alphaVbeta3, alpha6beta1 and alpha9beta1 integrins in xenograft cells. Treatment with bicistronic constructs reduced alphaVbeta3, alpha6beta1 and alpha9beta1 integrin expressions in xenograft injected nude mice. Migration and invasion were also inhibited by MMP-9, uPAR and cathepsin B shRNA treatments as assessed by spheroid migration, wound healing, and Matrigel invasion assays. As expected, bicistronic constructs further inhibited the adhesion, migration and invasive potential of the xenograft cells as compared to individual treatments.Downregulation of MMP-9, uPAR and cathespin B alone and in combination inhibits adhesion, migration and invasive potential of glioma xenografts by downregulating integrins and associated signaling molecules. Considering the existence of integrin inhibitor-resistant cancer cells, our study provides a novel and effective approach to inhibiting integrins by downregulating MMP-9, uPAR and cathepsin B in the treatment of glioma

    The Human Endogenous Circadian System Causes Greatest Platelet Activation during the Biological Morning Independent of Behaviors

    Get PDF
    Platelets are involved in the thromboses that are central to myocardial infarctions and ischemic strokes. Such adverse cardiovascular events have day/night patterns with peaks in the morning (~9 AM), potentially related to endogenous circadian clock control of platelet activation. The objective was to test if the human endogenous circadian system influences (1) platelet function and (2) platelet response to standardized behavioral stressors. We also aimed to compare the magnitude of any effects on platelet function caused by the circadian system with that caused by varied standardized behavioral stressors, including mental arithmetic, passive postural tilt and mild cycling exercise.We studied 12 healthy adults (6 female) who lived in individual laboratory suites in dim light for 240 h, with all behaviors scheduled on a 20-h recurring cycle to permit assessment of endogenous circadian function independent from environmental and behavioral effects including the sleep/wake cycle. Circadian phase was assessed from core body temperature. There were highly significant endogenous circadian rhythms in platelet surface activated glycoprotein (GP) IIb-IIIa, GPIb and P-selectin (6-17% peak-trough amplitudes; p ≀ 0.01). These circadian peaks occurred at a circadian phase corresponding to 8-9 AM. Platelet count, ATP release, aggregability, and plasma epinephrine also had significant circadian rhythms but with later peaks (corresponding to 3-8 PM). The circadian effects on the platelet activation markers were always larger than that of any of the three behavioral stressors.These data demonstrate robust effects of the endogenous circadian system on platelet activation in humans--independent of the sleep/wake cycle, other behavioral influences and the environment. The 9 AM timing of the circadian peaks of the three platelet surface markers, including platelet surface activated GPIIb-IIIa, the final common pathway of platelet aggregation, suggests that endogenous circadian influences on platelet function could contribute to the morning peak in adverse cardiovascular events as seen in many epidemiological studies
    • …
    corecore