774 research outputs found

    Backup without redundancy: genetic interactions reveal the cost of duplicate gene loss.

    Get PDF
    Many genes can be deleted with little phenotypic consequences. By what mechanism and to what extent the presence of duplicate genes in the genome contributes to this robustness against deletions has been the subject of considerable interest. Here, we exploit the availability of high-density genetic interaction maps to provide direct support for the role of backup compensation, where functionally overlapping duplicates cover for the loss of their paralog. However, we find that the overall contribution of duplicates to robustness against null mutations is low ( approximately 25%). The ability to directly identify buffering paralogs allowed us to further study their properties, and how they differ from non-buffering duplicates. Using environmental sensitivity profiles as well as quantitative genetic interaction spectra as high-resolution phenotypes, we establish that even duplicate pairs with compensation capacity exhibit rich and typically non-overlapping deletion phenotypes, and are thus unable to comprehensively cover against loss of their paralog. Our findings reconcile the fact that duplicates can compensate for each other's loss under a limited number of conditions with the evolutionary instability of genes whose loss is not associated with a phenotypic penalty

    A strategy for extracting and analyzing large-scale quantitative epistatic interaction data

    Get PDF
    Recently, approaches have been developed for high-throughput identification of synthetic sick/lethal gene pairs. However, these are only a specific example of the broader phenomenon of epistasis, wherein the presence of one mutation modulates the phenotype of another. We present analysis techniques for generating high-confidence quantitative epistasis scores from measurements made using synthetic genetic array and epistatic miniarray profile (E-MAP) technology, as well as several tools for higher-level analysis of the resulting data that are greatly enhanced by the quantitative score and detection of alleviating interactions

    Rapid creation and quantitative monitoring of high coverage shRNA libraries.

    Get PDF
    Short hairpin RNA libraries are limited by low efficacy of many shRNAs and by off-target effects, which give rise to false negatives and false positives, respectively. Here we present a strategy for rapidly creating expanded shRNA pools (approximately 30 shRNAs per gene) that are analyzed by deep sequencing (EXPAND). This approach enables identification of multiple effective target-specific shRNAs from a complex pool, allowing a rigorous statistical evaluation of true hits

    A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria.

    Get PDF
    To broadly explore mitochondrial structure and function as well as the communication of mitochondria with other cellular pathways, we constructed a quantitative, high-density genetic interaction map (the MITO-MAP) in Saccharomyces cerevisiae. The MITO-MAP provides a comprehensive view of mitochondrial function including insights into the activity of uncharacterized mitochondrial proteins and the functional connection between mitochondria and the ER. The MITO-MAP also reveals a large inner membrane-associated complex, which we term MitOS for mitochondrial organizing structure, comprised of Fcj1/Mitofilin, a conserved inner membrane protein, and five additional components. MitOS physically and functionally interacts with both outer and inner membrane components and localizes to extended structures that wrap around the inner membrane. We show that MitOS acts in concert with ATP synthase dimers to organize the inner membrane and promote normal mitochondrial morphology. We propose that MitOS acts as a conserved mitochondrial skeletal structure that differentiates regions of the inner membrane to establish the normal internal architecture of mitochondria

    The cohesin ring concatenates sister DNA molecules

    Get PDF
    Sister chromatid cohesion, which is essential for mitosis, is mediated by a multi-subunit protein complex called cohesin whose Scc1, Smc1, and Smc3 subunits form a tripartite ring structure. It has been proposed that cohesin holds sister DNAs together by trapping them inside its ring. To test this, we used site-specific cross-linking to create chemical connections at the three interfaces between the ring’s three constituent polypeptides, thereby creating covalently closed cohesin rings. As predicted by the ring entrapment model, this procedure produces dimeric DNA/cohesin structures that are resistant to protein denaturation. We conclude that cohesin rings concatenate individual sister minichromosome DNAs

    Overexpression of branched-chain amino acid aminotransferases rescues the growth defects of cells lacking the Barth syndrome-related gene TAZ1.

    Get PDF
    The yeast protein Taz1 is the orthologue of human Tafazzin, a phospholipid acyltransferase involved in cardiolipin (CL) remodeling via a monolyso CL (MLCL) intermediate. Mutations in Tafazzin lead to Barth syndrome (BTHS), a metabolic and neuromuscular disorder that primarily affects the heart, muscles, and immune system. Similar to observations in fibroblasts and platelets from patients with BTHS or from animal models, abolishing yeast Taz1 results in decreased total CL amounts, increased levels of MLCL, and mitochondrial dysfunction. However, the biochemical mechanisms underlying the mitochondrial dysfunction in BTHS remain unclear. To better understand the pathomechanism of BTHS, we searched for multi-copy suppressors of the taz1Δ growth defect in yeast cells. We identified the branched-chain amino acid transaminases (BCATs) Bat1 and Bat2 as such suppressors. Similarly, overexpression of the mitochondrial isoform BCAT2 in mammalian cells lacking TAZ improves their growth. Elevated levels of Bat1 or Bat2 did not restore the reduced membrane potential, altered stability of respiratory complexes, or the defective accumulation of MLCL species in yeast taz1Δ cells. Importantly, supplying yeast or mammalian cells lacking TAZ1 with certain amino acids restored their growth behavior. Hence, our findings suggest that the metabolism of amino acids has an important and disease-relevant role in cells lacking Taz1 function. KEY MESSAGES: Bat1 and Bat2 are multi-copy suppressors of retarded growth of taz1Δ yeast cells. Overexpression of Bat1/2 in taz1Δ cells does not rescue known mitochondrial defects. Supplementation of amino acids enhances growth of cells lacking Taz1 or Tafazzin. Altered metabolism of amino acids might be involved in the pathomechanism of BTSH

    The SND proteins constitute an alternative targeting route to the endoplasmic reticulum.

    Get PDF
    In eukaryotes, up to one-third of cellular proteins are targeted to the endoplasmic reticulum, where they undergo folding, processing, sorting and trafficking to subsequent endomembrane compartments(1). Targeting to the endoplasmic reticulum has been shown to occur co-translationally by the signal recognition particle (SRP) pathway(2) or post-translationally by the mammalian transmembrane recognition complex of 40 kDa (TRC40)(3,4) and homologous yeast guided entry of tail-anchored proteins (GET)(5,6) pathways. Despite the range of proteins that can be catered for by these two pathways, many proteins are still known to be independent of both SRP and GET, so there seems to be a critical need for an additional dedicated pathway for endoplasmic reticulum relay(7,8). We set out to uncover additional targeting proteins using unbiased high-content screening approaches. To this end, we performed a systematic visual screen using the yeast Saccharomyces cerevisiae(9,10), and uncovered three uncharacterized proteins whose loss affected targeting. We suggest that these proteins work together and demonstrate that they function in parallel with SRP and GET to target a broad range of substrates to the endoplasmic reticulum. The three proteins, which we name Snd1, Snd2 and Snd3 (for SRP-independent targeting), can synthetically compensate for the loss of both the SRP and GET pathways, and act as a backup targeting system. This explains why it has previously been difficult to demonstrate complete loss of targeting for some substrates. Our discovery thus puts in place an essential piece of the endoplasmic reticulum targeting puzzle, highlighting how the targeting apparatus of the eukaryotic cell is robust, interlinked and flexible

    The yeast P5 type ATPase, Spf1, regulates manganese transport into the endoplasmic reticulum

    Get PDF
    The endoplasmic reticulum (ER) is a large, multifunctional and essential organelle. Despite intense research, the function of more than a third of ER proteins remains unknown even in the well-studied model organism Saccharomyces cerevisiae. One such protein is Spf1, which is a highly conserved, ER localized, putative P-type ATPase. Deletion of SPF1 causes a wide variety of phenotypes including severe ER stress suggesting that this protein is essential for the normal function of the ER. The closest homologue of Spf1 is the vacuolar P-type ATPase Ypk9 that influences Mn2+ homeostasis. However in vitro reconstitution assays with Spf1 have not yielded insight into its transport specificity. Here we took an in vivo approach to detect the direct and indirect effects of deleting SPF1. We found a specific reduction in the luminal concentration of Mn2+ in ∆spf1 cells and an increase following it’s overexpression. In agreement with the observed loss of luminal Mn2+ we could observe concurrent reduction in many Mn2+-related process in the ER lumen. Conversely, cytosolic Mn2+-dependent processes were increased. Together, these data support a role for Spf1p in Mn2+ transport in the cell. We also demonstrate that the human sequence homologue, ATP13A1, is a functionally conserved orthologue. Since ATP13A1 is highly expressed in developing neuronal tissues and in the brain, this should help in the study of Mn2+-dependent neurological disorders

    Unbiased yeast screens identify cellular pathways affected in Niemann-Pick disease type C

    Get PDF
    Niemann–Pick disease type C (NPC) is a rare lysosomal storage disease caused by mutations in either the NPC1 or NPC2 genes. Mutations in the NPC1 gene lead to the majority of clinical cases (95%); however, the function of NPC1 remains unknown. To gain further insights into the biology of NPC1, we took advantage of the homology between the human NPC1 protein and its yeast orthologue, Niemann–Pick C–related protein 1 (Ncr1). We recreated the NCR1 mutant in yeast and performed screens to identify compensatory or redundant pathways that may be involved in NPC pathology, as well as proteins that were mislocalized in NCR1-deficient yeast. We also identified binding partners of the yeast Ncr1 orthologue. These screens identified several processes and pathways that may contribute to NPC pathogenesis. These included alterations in mitochondrial function, cytoskeleton organization, metal ion homeostasis, lipid trafficking, calcium signalling, and nutrient sensing. The mitochondrial and cytoskeletal abnormalities were validated in patient cells carrying mutations in NPC1, confirming their dysfunction in NPC disease

    High-throughput, quantitative analyses of genetic interactions in E. coli.

    Get PDF
    Large-scale genetic interaction studies provide the basis for defining gene function and pathway architecture. Recent advances in the ability to generate double mutants en masse in Saccharomyces cerevisiae have dramatically accelerated the acquisition of genetic interaction information and the biological inferences that follow. Here we describe a method based on F factor-driven conjugation, which allows for high-throughput generation of double mutants in Escherichia coli. This method, termed genetic interaction analysis technology for E. coli (GIANT-coli), permits us to systematically generate and array double-mutant cells on solid media in high-density arrays. We show that colony size provides a robust and quantitative output of cellular fitness and that GIANT-coli can recapitulate known synthetic interactions and identify previously unidentified negative (synthetic sickness or lethality) and positive (suppressive or epistatic) relationships. Finally, we describe a complementary strategy for genome-wide suppressor-mutant identification. Together, these methods permit rapid, large-scale genetic interaction studies in E. coli
    corecore