606 research outputs found

    Demonstration of astrocytes in cultured amniotic fluid cells of three cases with neural-tube defect

    Get PDF
    We have investigated the origin of rapidly adhering (RA) cells in three cases of neural tube defects (two anencephali, one encephalocele). We were able to demonstrate the presence of glial fibrillary acidic (GFA) protein in variable percentages (4ā€“80%) of RA cells cultured for 4ā€“6 days by use of indirect immunofluorescence with GFA antiserum. Cells cultured from amniotic fluids of normal pregnancies and fetal fibroblasts were completely GFA protein negative. GFA protein is well established as a highly specific marker for astrocytes. Demonstration of astrocytes may prove to be a criterion of high diagnostic value for neural tube defects. The percentage of astrocytes decreased with increasing culture time, while the percentage of fibronectin positive cells increased both in amniotic fluid cell cultures from neural tube defects and normal pregnancies

    Neural cell adhesion molecule (NCAM) association with PKCĪ²2 via Ī²I spectrin is implicated in NCAM-mediated neurite outgrowth

    Get PDF
    In hippocampal neurons and transfected CHO cells, neural cell adhesion molecule (NCAM) 120, NCAM140, and NCAM180 form Triton X-100ā€“insoluble complexes with Ī²I spectrin. Heteromeric spectrin (Ī±IĪ²I) binds to the intracellular domain of NCAM180, and isolated spectrin subunits bind to both NCAM180 and NCAM140, as does the Ī²I spectrin fragment encompassing second and third spectrin repeats (Ī²I2ā€“3). In NCAM120-transfected cells, Ī²I spectrin is detectable predominantly in lipid rafts. Treatment of cells with methyl-Ī²-cyclodextrin disrupts the NCAM120ā€“spectrin complex, implicating lipid rafts as a platform linking NCAM120 and spectrin. NCAM140/NCAM180ā€“Ī²I spectrin complexes do not depend on raft integrity and are located both in rafts and raft-free membrane domains. PKCĪ²2 forms detergent-insoluble complexes with NCAM140/NCAM180 and spectrin. Activation of NCAM enhances the formation of NCAM140/NCAM180ā€“spectrinā€“PKCĪ²2 complexes and results in their redistribution to lipid rafts. The complex is disrupted by the expression of dominant-negative Ī²I2ā€“3, which impairs binding of spectrin to NCAM, implicating spectrin as the bridge between PKCĪ²2 and NCAM140 or NCAM180. Redistribution of PKCĪ²2 to NCAMā€“spectrin complexes is also blocked by a specific fibroblast growth factor receptor inhibitor. Furthermore, transfection with Ī²I2ā€“3 inhibits NCAM-induced neurite outgrowth, showing that formation of the NCAMā€“spectrinā€“PKCĪ²2 complex is necessary for NCAM-mediated neurite outgrowth

    Glycosylation of a CNS-specific extracellular matrix glycoprotein, tenascin-R, is dominated by O-linked sialylated glycans and "brain-typeā€ neutral N-glycans

    Get PDF
    As a member of the tenascin family of extracellular matrix glycoproteins, tenascin-R is located exclusively in the CNS. It is believed to play a role in myelination and axonal stabilization and, through repulsive properties, may contribute to the lack of regeneration of CNS axons following damage. The contrary functions of the tenascins have been localized to the different structural domains of the protein. However, little is known concerning the influence of the carbohydrate conjugated to the many potential sites for N- and O-glycosylation (10-120% by weight). As a first analytical requirement, we show that >80% of the N-glycans in tenascin-R are neutral and dominated by complex biantennary structures. These display the "brain-typeā€ characteristics of outer-arm- and core-fucosylation, a bisecting N-acetylglucosamine and, significantly, an abundance of antennae truncation. In some structures, truncation resulted in only a single mannose residue remaining on the 3-arm, a particularly unusual consequence of the N-glycan processing pathway. In contrast to brain tissue, hybrid and oligomannosidic N-glycans were either absent or in low abundance. A high relative abundance of O-linked sialylated glycans was found. This was associated with a significant potential for O-linked glycosylation sites and multivalent display of the sialic acid residues. These O-glycans were dominated by the disialylated structure, NeuAcĪ±2-3GalĪ²1-3(NeuAcĪ±2-6)GalNAc. The possibility that these O-glycans enable tenascin-R to interact in the CNS either with the myelin associated glycoprotein or with sialoadhesin on activated microglia is discusse

    A New Era of Morphological Investigations: Reviewing Methods for Comparative Anatomical Studies

    Get PDF
    The increased use of imaging technology in biological research has drastically altered morphological studies in recent decades and allowed for the preservation of important collection specimens alongside detailed visualization of bony and soft-tissue structures. Despite the benefits associated with these newer imaging techniques, there remains a need for more ā€œtra- ditionalā€methods of morphological examination in many comparative studies. In this paper, we describe the costs and benefits of the various methods of visualizing, examining, and comparing morphological structures. There are significant differences not only in the costs associated with these different methods (monetary, time, equipment, and software), but also in the degree to which specimens are destroyed. We argue not for any one particular method over another in morphological studies, but instead suggest a combination of methods is useful not only for breadth of visualization, but also for the financial and time constraints often imposed on early-career research scientists

    Cell surface sialylation and fucosylation are regulated by the cell recognition molecule L1 via PLCĪ³ and cooperate to modulate embryonic stem cell survival and proliferation

    Get PDF
    AbstractCell surface glycosylation patterns are markers of cell type and status. However, the mechanisms regulating surface glycosylation patterns remain unknown. Using a panel of carbohydrate markers, we have shown that cell surface sialylation and fucosylation are upregulated in L1-transfected embryonic stem cells (L1-ESCs). Consistently, the mRNA levels of sialyltransferase ST6Gal1 and ST3Gal4, and fucosyltransferase FUT9 were significantly increased in L1-transfected ESCs. Activation of L1 signaling promoted cell survival and inhibited cell proliferation. ShRNAs knocking down FUT9, ST6Gal1 and ST3Gal4 blocked these effects. A phospholipase CĪ³ (PLCĪ³) inhibitor and shRNA reduced ST6Gal1, ST3Gal4 and FUT9 mRNA levels in the L1-ESCs. Thus, embryonic stem cell surface sialylation and fucosylation are regulated via PLCĪ³ by L1, with which they cooperate to modulate cell survival and proliferation

    Effect of pre-cardiac and adult stages of Dirofilaria immitis in pulmonary disease of cats: CBC, bronchial lavage cytology, serology, radiographs, CT images, bronchial reactivity, and histopathology

    Get PDF
    AbstractA controlled, blind study was conducted to define the initial inflammatory response and lung damage associated with the death of precardiac stages of Dirofilaria immitis in cats as compared to adult heartworm infections and normal cats. Three groups of six cats each were used: UU: uninfected untreated controls; PreS I: infected with 100 D. immitis L3 by subcutaneous injection and treated topically with selamectin 32 and 2 days pre-infection and once monthly for 8 months); IU: infected with 100 D. immitis L3 and left untreated. Peripheral blood, serum, bronchial lavage, and thoracic radiographic images were collected from all cats on Days 0, 70, 110, 168, and 240. CT images were acquired on Days 0, 110, and 240. Cats were euthanized, and necropsies were conducted on Day 240 to determine the presence of heartworms. Bronchial rings were collected for in vitro reactivity. Lung, heart, brain, kidney, and liver tissues were collected for histopathology. Results were compared for changes within each group. Pearson and Spearman correlations were performed for association between histologic, radiographic, serologic, hematologic and bronchoalveolar lavage (BAL) results. Infected cats treated with selamectin did not develop radiographically evident changes throughout the study, were heartworm antibody negative, and were free of adult heartworms and worm fragments at necropsy. Histologic lung scores and CT analysis were not significantly different between PreS I cats and UU controls. Subtle alveolar myofibrosis was noted in isolated areas of several PreS I cats and an eosinophilic BAL cytology was noted on Days 75 and 120. Bronchial ring reactivity was blunted in IU cats but was normal in PreS I and UU cats. The IU cats became antibody positive, and five cats developed adult heartworms. All cats with heartworms were antigen positive at one time point; but one cat was antibody positive, antigen negative, with viable adult females at necropsy. The CT revealed early involvement of all pulmonary arteries and a random pattern of parenchymal disease with severe lesions immediately adjacent to normal areas. Analysis of CT 3D reconstruction and Hounsfield units demonstrated lung disease consistent with restrictive pulmonary fibrosis with an interstitial infiltrate, absence of air trapping, and decrease in total lung volume in Group IU as compared to Groups UU and PreS I. The clinical implications of this study are that cats pretreated with selamectin 1 month before D. immitis L3 infection did not become serologically positive and did not develop pulmonary arterial hypertrophy and myofibrosis

    Rapamycin-loaded nanoparticles for inhibition of neointimal hyperplasia in experimental vein grafts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nanoparticles possess several advantages as a carrier system for intracellular delivery of therapeutic agents. Rapamycin is an immunosuppressive agent which also exhibits marked antiproliferative properties. We investigated whether rapamycin-loaded nanoparticles(NPs) can reduce neointima formation in a rat model of vein graft disease.</p> <p>Methods</p> <p>Poly(lactic-co-glycolic acid) (PLGA) NPs containing rapamycin was prepared using an oil/water solvent evaporation technique. Nanoparticle size and morphology were determined by dynamic light scattering methodology and electron microscopy. In vitro cytotoxicity of blank, rapamycin-loaded PLGA (RPLGA) NPs was studied using MTT Assay. Excised rat jugular vein was treated ex vivo with blank-NPs, or rapamycin-loaded NPs, then interposed back into the carotid artery position using a cuff technique. Grafts were harvested at 21 days and underwent morphometric analysis as well as immunohistochemical analysis.</p> <p>Results</p> <p>Rapamycin was efficiently loaded in PLGA nanoparticles with an encapsulation efficiency was 87.6%. The average diameter of NPs was 180.3 nm. The NPs-containing rapamycin at 1 ng/ml significantly inhibited vascular smooth muscular cells proliferation. Measurement of rapamycin levels in vein grafts shown that the concentration of rapamycin in vein grafts at 3 weeks after grafting were 0.9 Ā± 0.1 Ī¼g/g. In grafted veins without treatment intima-media thickness was 300.4 Ā±181.5 Ī¼m after grafting 21 days. Whereas, Veins treated with rapamycin-loaded NPs showed a reduction of intimal-media thickness of 150.2 Ā± 62.5 Ī¼m (p = 0.001). CD-31 staining was used to measure luminal endothelial coverage in grafts and indicated a high level of endothelialization in 21 days vein grafts with no significant effect of blank or rapamycin-loaded NPs group.</p> <p>Conclusions</p> <p>We conclude that sustained-release rapamycin from rapymycin loaded NPs inhibits vein graft thickening without affecting the reendothelialization in rat carotid vein-to-artery interposition grafts and this may be a promising therapy for the treatment of vein graft disease.</p

    Development of novel methods for non-canonical myeloma protein analysis with an innovative adaptation of immunofixation electrophoresis, native top-down mass spectrometry, and middle-down de novo sequencing

    Get PDF
    OBJECTIVES: Multiple myeloma (MM) is a malignant plasma cell neoplasm, requiring the integration of clinical examination, laboratory and radiological investigations for diagnosis. Detection and isotypic identification of the monoclonal protein(s) and measurement of other relevant biomarkers in serum and urine are pivotal analyses. However, occasionally this approach fails to characterize complex protein signatures. Here we describe the development and application of next generation mass spectrometry (MS) techniques, and a novel adaptation of immunofixation, to interrogate non-canonical monoclonal immunoproteins. METHODS: Immunoprecipitation immunofixation (IP-IFE) was performed on a Sebia Hydrasys Scan2. Middle-down de novo sequencing and native MS were performed with multiple instruments (21T FT-ICR, Q Exactive HF, Orbitrap Fusion Lumos, and Orbitrap Eclipse). Post-acquisition data analysis was performed using Xcalibur Qual Browser, ProSight Lite, and TDValidator. RESULTS: We adapted a novel variation of immunofixation electrophoresis (IFE) with an antibody-specific immunosubtraction step, providing insight into the clonal signature of gamma-zone monoclonal immunoglobulin (M-protein) species. We developed and applied advanced mass spectrometric techniques such as middle-down de novo sequencing to attain in-depth characterization of the primary sequence of an M-protein. Quaternary structures of M-proteins were elucidated by native MS, revealing a previously unprecedented non-covalently associated hetero-tetrameric immunoglobulin. CONCLUSIONS: Next generation proteomic solutions offer great potential for characterizing complex protein structures and may eventually replace current electrophoretic approaches for the identification and quantification of M-proteins. They can also contribute to greater understanding of MM pathogenesis, enabling classification of patients into new subtypes, improved risk stratification and the potential to inform decisions on future personalized treatment modalities
    • ā€¦
    corecore