82 research outputs found

    Original Article

    Get PDF
    Objective: Glucagon is well known to regulate blood glucose but may be equally important for amino acid metabolism. Plasma levels of amino acids are regulated by glucagon-dependent mechanism(s), while amino acids stimulate glucagon secretion from alpha cells, completing the recently described liver-alpha cell axis. The mechanisms underlying the cycle and the possible impact of hepatic steatosis are unclear. Methods: We assessed amino acid clearance in vivo in mice treated with a glucagon receptor antagonist (GRA), transgenic mice with 95% reduction in alpha cells, and mice with hepatic steatosis. In addition, we evaluated urea formation in primary hepatocytes from ob/ob mice and humans, and we studied acute metabolic effects of glucagon in perfused rat livers. We also performed RNA sequencing on livers from glucagon receptor knock-out mice and mice with hepatic steatosis. Finally, we measured individual plasma amino acids and glucagon in healthy controls and in two independent cohorts of patients with biopsy-verified non-alcoholic fatty liver disease (NAFLD). Results: Amino acid clearance was reduced in mice treated with GRA and mice lacking endogenous glucagon (loss of alpha cells) concomitantly with reduced production of urea. Glucagon administration markedly changed the secretion of rat liver metabolites and within minutes increased urea formation in mice, in perfused rat liver, and in primary human hepatocytes. Transcriptomic analyses revealed that three genes responsible for amino acid catabolism (Cps1, Slc7a2, and Slc38a2) were downregulated both in mice with hepatic steatosis and in mice with deletion of the glucagon receptor. Cultured ob/ob hepatocytes produced less urea upon stimulation with mixed amino acids, and amino acid clearance was lower in mice with hepatic steatosis. Glucagon-induced ureagenesis was impaired in perfused rat livers with hepatic steatosis. Patients with NAFLD had hyperglucagonemia and increased levels of glucagonotropic amino acids, including alanine in particular. Both glucagon and alanine levels were reduced after diet-induced reduction in Homeostatic Model Assessment for Insulin Resistance (HOMA-IR, a marker of hepatic steatosis). Conclusions: Glucagon regulates amino acid metabolism both non-transcriptionally and transcriptionally. Hepatic steatosis may impair glucagon-dependent enhancement of amino acid catabolism. (C) 2020 The Author(s). Published by Elsevier GmbH

    Effects of acute exercise and exercise training on plasma GDF15 concentrations and associations with appetite and cardiometabolic health in individuals with overweight or obesity – A secondary analysis of a randomized controlled trial

    Get PDF
    Growth Differentiation Factor 15 (GDF15) is seemingly involved in appetite control. Acute exercise increases GDF15 concentrations in lean humans, but acute and long-term effects of exercise on GDF15 in individuals with overweight/obesity are unknown. We investigated the effects of acute exercise and exercise training on GDF15 concentrations in individuals with overweight/obesity and associations with appetite and cardiometabolic markers. 90 physically inactive adults (20–45 years) with overweight/obesity were randomized to 6-months habitual lifestyle (CON, n=16), or isocaloric exercise of moderate (MOD, n=37) or vigorous intensity (VIG, n=37), 5 days/week. Testing was performed at baseline, 3, and 6 months. Plasma GDF15 concentrations, other metabolic markers, and subjective appetite were assessed fasted and in response to acute exercise before an ad libitum meal. Cardiorespiratory fitness, body composition, insulin sensitivity, and intraabdominal adipose tissue were measured. At baseline, GDF15 increased 18% (95%CI: 4; 34) immediately after acute exercise and 32% (16; 50) 60 min post-exercise. Fasting GDF15 increased 21% (0; 46) in VIG after 3 months (p=0.045), but this attenuated at 6 months (13% (−11; 43), p=0.316) and was unchanged in MOD (11% (−6; 32), p=0.224, across 3 and 6 months). Post-exercise GDF15 did not change in MOD or VIG. GDF15 was not associated with appetite or energy intake. Higher GDF15 was associated with lower cardiorespiratory fitness, central obesity, dyslipidemia, and poorer glycemic control. In conclusion, GDF15 increased in response to acute exercise but was unaffected by exercise training. Higher GDF15 concentrations were associated with a less favorable cardiometabolic profile but not with markers of appetite. This suggests that GDF15 increases in response to acute exercise independent of training state. Whether this has an impact on free-living energy intake and body weight management needs investigation
    corecore