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Abstract

Rationale: The hormone glucagon-like peptide-1 (GLP-1) decreases blood glucose and 
appetite. Greater physical activity (PA) is associated with lower incidence of type 2 
diabetes. While acute exercise may increase glucose-induced response of GLP-1, it is 
unknown how habitual PA affects GLP-1 secretion. We hypothesised that habitual PA 
associates with greater glucose-induced GLP-1 responses in overweight individuals.
Methods: Cross-sectional analysis of habitual PA levels and GLP-1 concentrations in 1326 
individuals (mean (s.d.) age 66 (7) years, BMI 27.1 (4.5) kg/m2) from the ADDITION-PRO 
cohort. Fasting and oral glucose-stimulated GLP-1 responses were measured using 
validated radioimmunoassay. PA was measured using 7-day combined accelerometry 
and heart rate monitoring. From this, energy expenditure (PAEE; kJ/kg/day) and fractions 
of time spent in activity intensities (h/day) were calculated. Cardiorespiratory fitness 
(CRF; mL O2/kg/min) was calculated using step tests. Age-, BMI- and insulin sensitivity-
adjusted associations between PA and GLP-1, stratified by sex, were evaluated by linear 
regression analysis.
Results: In 703 men, fasting GLP-1 concentrations were 20% lower (95% CI: −33; −3%, 
P = 0.02) for every hour of moderate-intensity PA performed. Higher CRF and PAEE were 
associated with 1–2% lower fasting GLP-1 (P = 0.01). For every hour of moderate-intensity 
PA, the glucose-stimulated GLP-1 response was 16% greater at peak 30 min (1; 33%, 
PrAUC0-30 = 0.04) and 20% greater at full response (3; 40%, PrAUC0-120 = 0.02). No associations 
were found in women who performed PA 22 min/day vs 32 min/day for men.
Conclusion: Moderate-intensity PA is associated with lower fasting and greater glucose-
induced GLP-1 responses in overweight men, possibly contributing to improved glucose 
and appetite regulation with increased habitual PA.
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Introduction

Obesity and type 2 diabetes (T2D) are among the leading 
causes of death and overall health complications such 
as hypertension, dyslipidaemia, and heart disease (1). 
However, another strong predictor of such complications 
is a sedentary lifestyle, which constitutes an independent 
health risk (2). In high-income countries, the second 
most important preventable cause of premature death is 
physical inactivity, next to smoking (2, 3). A recent meta-
analysis of data from studies examining the relationship 
between accelerometer-measured physical activity and 
all-cause mortality demonstrated that higher levels of 
total physical activity, at any intensity, and less time spent 
sedentary, are associated with substantially reduced risk 
for premature mortality (4).

Glucagon-like peptide-1 (GLP-1) is a peptide hormone 
secreted from intestinal L-cells upon meal intake (5). 
GLP-1 stimulates insulin secretion in a glucose-dependent 
manner – as part of ‘the incretin effect’ – being responsible 
for up to 70% of the postprandial insulin response in 
healthy individuals whilst being severely impaired in 
patients with prediabetes and T2D (5, 6). Furthermore, 
GLP-1 responses are lower in individuals with overweight 
and obesity, independently of glucose tolerance status (6).  
Interestingly, the blunted GLP-1 response in obesity 
normalizes after sustained weight loss (7). Besides its 
glycaemic effects, GLP-1 inhibits appetite, reduces food 
intake, and slows gastric emptying (8, 9).

Dependent on intensity, physical activity causes 
mechanical bouncing, changes neuroendocrine activity, 
and shifts blood flow away from the gastrointestinal 
tract towards the lungs and working muscles (10, 11). 
These changes may affect gastrointestinal and digestive 
functions such as motility, absorption, and secretion. 
During exhausting endurance exercise (e.g. long-distance 
running), this can lead to unpleasant symptoms such as 
diarrhea and intestinal cramps (10). At low-to-moderate 
intensity, however, physical activity seems to have 
beneficial effects on gastrointestinal health by reducing 
risks of constipation (12, 13), which is strongly related to 
inactivity (14). Also the effects of exercise on secretion 
of gastrointestinal hormones like GLP-1 have been 
investigated (15). In normal-weight adults, postprandial 
GLP-1 responses are suggested to increase after acute 
exercise (16, 17, 18, 19, 20) whereas studies in individuals 
with overweight show contradicting results of unaffected, 
increased, or reduced GLP-1 responses after acute exercise 
(17, 21, 22, 23, 24, 25, 26, 27). The contradicting findings 
between studies are likely due to different participant 

characteristics (e.g. BMI, age, and fitness level), exercise 
protocols (e.g. duration and intensity), and GLP-1 
measurement techniques (28). For instance, free fatty acids 
are found to inhibit the secretion of GLP-1 (29, 30) and 
therefore differences in plasma free fatty acid responses 
to acute exercise might explain some differences in the 
effects of exercise on GLP-1 secretion.

It may be asked whether one or few bouts of structured 
exercise are relevant in the overall regulation of circulating 
biomarkers like GLP-1. Moreover, since the risk of developing 
T2D is strongly associated with overweight and excess 
body fat (31), focusing on daily physical activities that are 
less vigorous and weight bearing (e.g. to the knee joints) 
compared to structured exercise sessions might be a more 
achievable strategy in relation to T2D prevention. Therefore, 
our objective was to investigate whether an association 
between habitual physical activity and GLP-1 secretion can 
be demonstrated in an overweight population at risk of 
developing T2D. Since greater leisure time physical activity 
is associated with substantially lower incidence of T2D (32) 
and because greater GLP-1 responses to glucose are associated 
with better beta-cell function through stimulation of insulin 
secretion (6), we hypothesised that more time spent being 
physically active is positively associated with glucose-induced 
GLP-1 responses from the intestinal L-cells, independently 
of insulin sensitivity. To test our hypothesis, we investigated 
the associations of fasting and glucose-stimulated GLP-1 
concentrations with moderate-intensity physical activity, 
physical activity energy expenditure (PAEE) as a measure 
of total activity volume, and cardiorespiratory fitness level 
(CRF) in an elderly population of 1326 individuals with 
BMI ranging from normal-weight to obese. This is, to our 
knowledge, the first investigation of the association of 
habitual physical activity with GLP-1 responses in a large 
population at risk of developing T2D.

Methods

Ethics

The study was conducted according to the Helsinki 
Declaration and approved by the Ethics Committee of 
the Central Denmark Region (ref. no. 20080229). All 
participants provided oral and written informed consent 
before participation in the study.

Study population

This present study is an analysis of data from the Danish 
ADDITION-PRO study described in detail elsewhere (33).  
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The study includes a subpopulation of participants 
from previously published studies (6, 34, 35, 36). The 
ADDITION-PRO study is a longitudinal cohort follow-up 
study of the Danish part of the ADDITION-Europe study 
in which a total of 2082 individuals with impaired glucose 
regulation at screening and individuals from a random 
subsample of individuals at lower diabetes risk completed 
a health examination from 2009 to 2011.

In the present analysis, we excluded participants with 
known diabetes (n = 336), those who were fasting less 
than 8 h prior to the health examination (n = 20), those 
who could not be classified due to missing information 
on fasting or 2-h plasma glucose concentrations (n = 12), 
those with no blood samples taken for measurement 
of GLP-1 (n = 252), and those with no measurements of 
physical activity (n = 136), leaving a subpopulation of 
1326 individuals. Of the 1326 included individuals, 793 
(60%) had their cardiorespiratory fitness measured.

General information and body composition

The Danish civil registration number provided 
information on age and sex, whereas information on 
smoking status (current smoker, never smoker, ex-smoker) 
and alcohol consumption (units per week) was obtained 
from general health questionnaires completed during 
the health examination (33). Height was measured 
without shoes to the nearest 0.1 cm on a stadiometer 
(Seca, Hamburg, Germany). Participants were weighted to 
nearest 0.1 kg with light clothes and without shoes using 
a body composition analyser (Tanita, Tokyo, Japan). Waist 
circumference was measured at the mid-point between the 
lower costal margin and the level of the anterior superior 
iliac crest. The measurement was taken twice by the same 
person to nearest 0.1 cm, and the mean value of the two 
measurements was used.

Physical activity assessment

An objective measure of physical activity behaviour 
was obtained from individually calibrated heart rate 
and uniaxial accelerometers (ActiHeart, CamNTech, 
Cambridge, UK) (37), which the participants wore for 7 
consecutive days. Heart rate and accelerometry data were 
downloaded using the manufacturer’s software (www.
camntech.com). Heart rate data were pre-processed to 
eliminate noise (38) and calibrated to physical activity 
energy expenditure (PAEE) using a submaximal step test 
(n = 793) as described in detail elsewhere (39) or a group 
equation for those without step test (n = 533) (34).

Physical activity intensity was modelled using a 
branched equation framework (37) from which total 
physical activity energy expenditure (PAEE) and fractions 
of time spent at different physical activity intensity 
levels were derived. A full description of the processing 
of accelerometer data and heart rate measures from the 
combined monitor is available elsewhere (38). Intensity 
was expressed as multiples of metabolic equivalent of 
tasks (METs) using a standard value for resting metabolic 
rate (71 J/min/kg) and defined as the following intensity 
categories: sedentary behaviour (<1.5 METs), light 
intensity physical activity (LPA) (1.5-3.0 METs), and 
moderate-to-vigorous intensity (MVPA) (>3.0 METs).

Heart rate data were preprocessed using a two-stage 
Gaussian Process Robust regression to de-noise the heart rate 
signal according to the method described by Stegle  et al. (38).  
The procedure works well for dealing with noise when the 
sensor is worn and, owing to the short-term covariance 
function, also for brief periods of missing data (e.g., 
electrode changes) (35). Non-wear time was identified using 
the Bayesian uncertainty estimate from a Gaussian Process 
Robust regression as described by Stegle   et  al. (38) and 
defined as prolonged periods of inactivity combined with 
non-physiological heart rate. Such segments were marked as 
non-wear if longer than 90 min as described by Amidid  et al. 
(36). All measures were summarized to daily averages whilst 
minimising diurnal bias caused by imbalance in non-
wear patterns; this technique provides estimates of PAEE 
comparable to gold-standard isotopic assessment (40).

Cardiorespiratory fitness measurement

A submaximal 8-min step test was performed in order to 
estimate cardiorespiratory fitness (CRF) (expressed as ml 
O2/kg/min) by extrapolating the linear regression line 
between the observed heart rate and oxygen cost of each 
step (39) to maximal heart rate defined by the Tanaka 
equation (208-0.7 × age). Participants had to complete 
a minimum of 4 min of the step test to be included in 
analysis.

The following physical activity parameters were 
included in the present study: physical activity energy 
expenditure (PAEE; kJ/kg/day), moderate-to-vigorous 
intensity physical activity (MVPA; hours/day), and 
cardiorespiratory fitness (CRF; mL O2/kg/min).

Oral glucose tolerance test

Participants met in the morning after an overnight fast 
of minimum 8 h and venous blood samples were drawn. 
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Subsequently, the participants underwent a standardized 
oral glucose tolerance test (OGTT), ingesting 75 g glucose 
dissolved in 250 mL water, and blood samples were drawn 
30 and 120 min after glucose intake.

Biochemical measures

Following preanalytical guidelines for measurement of 
GLP-1 (41), plasma samples were taken before and during 
the 2-h OGTT in chilled EDTA-coated tubes, put on ice 
immediately, and centrifuged within 30 min for 10 min 
(3000 rpm at 4°C). Subsequently, plasma was isolated and 
stored at −80°C. Concentrations of GLP-1 were analysed 
using a validated in-house developed RIA. The assay is 
COOH-terminal and thus measures both the active form 
of GLP-1 (7-36)NH2 and the DPP-4 generated metabolite 
GLP-1 (9-36)NH2 to quantify total GLP-1. The analytical 
detection limit was 1 pmol/L, and intra- and interassay 
coefficients of variation were 6 and 1–5%, respectively, at 
GLP-1 plasma concentrations of 20 pmol/L. The samples 
were analysed consecutively within 2 months using 
identical quality controls and identical batches for all 
reagents in each analysis set.

Insulin concentrations in serum (prepared by keeping 
whole blood at room temperature for 0.5–1.5 h followed 
by centrifugation for 10 min at 3000 rpm without cooling) 
was measured by immunoassay. Plasma glucose (prepared 
immediately upon collection in fluoride-heparin coated 
tubes, placed on ice, and centrifuged for 10 min at 3000 
rpm at 4°C) was measured by HPLC as described fully 
elsewhere (33).

Calculations

GLP-1 responses were calculated as total areas under 
the curve (tAUCs, pmol/L × min) from the fasting state 
(baseline) to 30 and 120 min by the use of the trapezoid 
rule. From these, we calculated the relative peak response 
(rAUC0–30) as tAUC0–30/(fasting concentration × 30 min) 
and the relative full response (rAUC0–120) as tAUC0–120/
(fasting concentration × 120 min). Because the response 
of GLP-1 to oral glucose peaks around 30 min (42) the 
estimated rAUC0–30 (GLP-1 peak 30 min) is likely to 
include the peak GLP-1 response, whereas the rAUC0–120 
will reflect the full GLP-1 response to the 2-h OGTT. The 
rAUC reflects the change in GLP-1 concentrations relative 
to baseline (fasting) level, that is, rAUC > 1 indicates an 
increase in GLP-1 levels from fasting levels, whereas 
rAUC < 1 indicates a decrease in GLP-1 levels. The rAUC 
is always positive and can therefore be logarithmically 

transformed, which is not the case for the incremental 
area under the curve calculated as the difference between 
tAUC and baseline. The relative and incremental AUCs 
express the same (the change in GLP-1 release from 
baseline) but on a different scale (relative vs absolute).

As a proxy measure of peripheral insulin  
sensitivity, we calculated the insulin sensitivity 
index (ISI0–120) (43). As a surrogate measure of first-
phase insulin release, we calculated the insulinogenic  
index as (insulin_30 min – insulin_0 min)/(glucose_30 
min – glucose_0 min) (44).

Statistical analyses

Fasting plasma GLP-1 and relative responses of GLP-1 
(peak: rAUC0-30 and full: rAUC0-120) were considered as 
outcomes. The following measures of physical activity 
were considered as exposures: physical activity energy 
expenditure (PAEE), moderate-to-vigorous intensity 
physical activity (MVPA), and cardiorespiratory  
fitness (CRF).

Associations of GLP-1 response and physical activity 
measures (PAEE, MVPA, and CRF) were studied by linear 
regression analyses. All analyses in the present study 
were stratified by sex because a sex-difference in terms of 
GLP-1 response has previously been found in this study 
cohort (6). Analyses were adjusted for age (model 1) and 
further by BMI and ISI0-120 (model 2) because previous 
studies have found a positive association between insulin 
sensitivity and GLP-1 response (6, 45) and between PAEE 
and insulin sensitivity (34). In model 2, we tested for 
a modifying effect of ISI0-120 on the associations with 
physical activity by including interaction terms between 
ISI0-120 and the physical activity exposures in the model. 
For MVPA, we further adjusted for PAEE to ensure that 
an increase in MVPA was at the expense of a reduction  
in LPA or sedentary behaviour and not due to an increase 
in PAEE.

Data on ISI0–120 and GLP-1 responses were 
logarithmically transformed before analysis to fulfill 
the requirement of a normal distribution of the model 
residuals. A two-sided 5% level of significance was used.

In a sensitivity analysis, we repeated the analyses 
above for the subset of participants with cardiorespiratory 
fitness data available (n = 793).

Statistical analyses were performed in R, version 3.6.0 
(The R Foundation for Statistical Computing) and SAS, 
version 9.4 (SAS Institute).

Descriptive statistics are presented as mean ± SD for 
normally distributed variables and medians (interquartile 
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range) for non-normally distributed variables. Outcome 
data (fasting and glucose-stimulated responses of GLP-1) 
are presented as percentage change (%) with 95% CI by a 
unit increase in the physical activity parameters.

Results

Characteristics of the study population

The mean age of the 1326 participants (53% men) was 
66 ± 7 years and mean BMI was 27.1 ± 4.5 kg/m2 (Table 1).  
99.2% of the participants had a minimum of 24 h of 
ActiHeart wear time and 97% had a minimum of 48-h 
wear time. The 703 men spent 0.54 h/day (0.22; 1.02) at 
moderate-to-vigorous physical activity (MVPA; >3.0 METs) 
compared to 0.37 h/day (0.16; 0.76) for the 623 women 
(Table 1), corresponding to 32 min/day and 22 min/day, 
respectively. 44% of the men and 39% of the women met 
the Danish guidelines on moderate-intensity physical 
activity (i.e. ≥30 min/day) (Table 1) (46). Men also had 

higher cardiorespiratory fitness levels (CRF) (30.8 ± 5.4 mL 
O2/kg/min) than women (28.7 ± 5.1 O2/kg/min) (Table 1).  
More than 98% of the included participants spent time 
in MVPA. Noteworthy, however, almost none of the 
participants spent time performing vigorous intensity PA 
(VPA; >6.0 METs) (0.00 min/day (0.00; 0.43)) (Table 1).

Excluded participants did not differ in terms of age and 
sex (Supplementary Table 1, see section on supplementary 
data given at the end of this article). However, they were 
more likely to smoke, were slightly more overweight, 
and almost half of them had known T2D. There was no 
modifying effect of peripheral insulin sensitivity (ISI0-120) 
on the associations between fasting GLP-1 or glucose-
stimulated response GLP-1 and PA (P ≥ 0.084). Therefore, 
the interaction term was removed from the models.

Fasting levels of GLP-1

In men, but not in women, fasting levels of GLP-1 were 
19.5% lower (−33.0; −3.3%, P = 0.021) for every 60-min 

Table 1 Baseline characteristics of the study population.

n Total Women Men

n 1326 623 703
Age (years) 1326 66 (7) 66 (7) 66 (7)
Current smokers (%) 1326 15.8 (13.9; 17.9) 13.3 (10.8; 16.2) 18.1 (15.3; 21.1)
Glucose tolerance status (%) 1326
 NGT – 53.0 (50.3; 55.7) 58.9 (54.9; 62.8) 47.8 (44.0; 51.6)
 Pre-diabetes – 35.6 (33.0; 38.2) 33.1 (29.4; 36.9) 37.8 (34.2; 41.5)
 Screen detected diabetes – 11.4 (9.7; 13.2) 8.0 (6.0; 10.4) 14.4 (11.9; 17.2)
BMI (kg/m2) 1326 27.1 (4.5) 26.6 (5.1) 27.5 (3.9)
Systolic blood pressure (mmHg) 1324 133 (17) 130 (18) 136 (16)
Diastolic blood pressure (mmHg) 1324 81 (10) 81 (10) 82 (10)
Fasting plasma glucose (mmol/L) 1326 6.0 (0.8) 5.9 (0.7) 6.1 (0.8)
2-h plasma glucose (mmol/L) 1325 6.8 (2.3) 6.6 (2.1) 7.0 (2.4)
Fasting serum insulin (pmol/L) 1325 37 (25; 55) 36 (24; 50) 39 (26; 60)
2-h serum insulin (pmol/L) 1324 184 (110; 313) 185 (117; 299) 181 (101; 325)
ISI0-120 1321 36.9 (25.9; 48.8) 37.2 (27.6; 48.8) 36.4 (24.0; 49.2)
Insulinogenic index 1314 8.3 (5.2; 13.7) 9.0 (5.3; 14.4) 7.9 (5.2; 13.1)
Physical activity measures
 PAEE (kJ/kg/day) 1267 32.7 (15.6) 31.0 (14.8) 34.3 (16.1)
 VPA (h/day) 1104 0.00 (0.00; 0.01) 0.00 (0.00; 0.00) 0.00 (0.00; 0.02)
 MVPA (h/day) 1104 0.47 (0.19; 0.90) 0.37 (0.16; 0.76) 0.54 (0.22; 1.02)
 MVPA ≥0.5 h/day (%) 1104 33.5 (29.8; 37.4) 38.9 (36.3; 41.6) 43.7 (40.0; 47.4)
 LPA (h/day) 1104 4.63 (3.39; 5.90) 4.61 (3.30; 5.92) 4.67 (3.41; 5.85)
 Sedentary (h/day) 1104 12.2 (2.4) 12.3 (2.4) 12.1 (2.3)
 CRF (ml O2/kg/min) 793 29.9 (5.4) 28.7 (5.1) 30.8 (5.4)
Biochemical measures
 Plasma GLP-1, tAUC0-30 (pmol/L × min) 1310 615 (450; 825) 645 (465; 870) 585 (435; 780)
 Plasma GLP-1, tAUC0-120 (pmol/L × min) 1303 2805 (2040; 3795) 3075 (2280; 4200) 2595 (1935; 3480)
 Plasma GLP-1, rAUC0–30 (fold increase) 1310 1.7 (1.3; 2.5) 1.9 (1.5; 2.9) 1.6 (1.3; 2.1)
 Plasma GLP-1, rAUC0–120 (fold increase) 1303 2.0 (1.5; 3.1) 2.3 (1.7; 3.7) 1.8 (1.4; 2.6)

Data are the means (s.d.), medians (interquartile range) or percentages (95% CI).
CRF, cardiorespiratory fitness; GLP-1, glucagon-like peptide-1; ISI0-120, insulin sensitivity index; LPA, light physical activity; MVPA, moderate-to-vigorous 
physical activity; NGT, normal glucose tolerance; PAEE, physical activity energy expenditure; VPA, vigorous physical activity.
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increase in MVPA (Table 2). In men, higher PAEE and 
CRF levels were also associated with lower fasting GLP-1 
concentrations (−0.9; −0.1%, P = 0.008 and −3.3; −0.5%, 
P = 0.010, respectively). Again, this was not found in 
women (Table 2).

Glucose-stimulated response of GLP-1

In men, but not in women, the glucose-stimulated GLP-1 
responses were 15.8% (0.8; 33.0%, P = 0.038) (rAUC0-30) 
and 20.0% greater (2.6; 40.3%, P = 0.022) (rAUC0-120) for 
every 60-min increase in MVPA, respectively (Table 2). 
No significant associations between glucose-stimulated 
GLP-1 responses and PAEE or CRF levels were found in 
men or women (Table 2).

The results for MVPA and PAEE were replicated in 
the sensitivity analysis including only the subset of 
793 participants with CRF data available (55% men) 
(Supplementary Table 2).

Discussion

This is to our knowledge the first study in which the 
association of habitual physical activity with GLP-1 
responses during a 2-h OGTT has been investigated in 
an elderly population at risk of developing T2D. In men,  

but not in women, we found that the GLP-1 peak response 
(30 min) to oral glucose was 16% greater and the full 
response (120 min) was 20% greater for every additional 
hour spent on moderate-intensity physical activity. 
These associations were independent of BMI and insulin 
sensitivity. Furthermore, fasting concentrations of GLP-1 
in plasma were lower for every additional hour spent on 
moderate-intensity physical activity per day. The lower 
fasting concentrations of GLP-1 were associated with 
higher cardiorespiratory fitness level (CRF) and higher 
total activity volume (PAEE). Importantly, almost none of 
the participants spent time performing vigorous-intensity 
physical activity, indicating that habitual physical activity 
at moderate intensity, which in this cohort includes daily 
chores such as cleaning, gardening, and playing with 
(grand)children (34), may be sufficient to lower fasting 
levels and stimulate the glucose-induced GLP-1 response 
in an elderly population of overweight men.

GLP-1 reduces blood glucose levels after oral glucose 
intake by stimulating insulin secretion (47), and greater 
levels of physical activity are associated with substantially 
lower incidence of T2D (32) and greater insulin sensitivity 
(34). Fasting and 2-h OGTT levels of glucose are lower with 
higher maximal oxygen consumption (VO2 max levels), 
and glucose-stimulated insulin secretion is inversely 
associated with VO2 max, indicating an improved insulin 
secretion and sensitivity in individuals with higher 

Table 2 Associations of GLP-1 levels in plasma and physical activity parameters.

Model
PAEE MVPA CRFa

Difference P Difference P Difference P

Women (n = 623)
 Fasting plasma  

GLP-1 (% change)
1 0.0 (−0.5; 0.5) 0.923 −12.8 (−32.0; 11.7) 0.278 0.5 (−1.4; 2.5) 0.588

2 0.1 (−0.4; 0.6) 0.654 −10.7 (−30.4; 14.5) 0.372 0.7 (−1.4; 3.0) 0.500
 rAUC0–30 (% change) 1 0.2 (−0.2; 0.6) 0.304 −3.5 (−20.2; 16.8) 0.716 0.1 (−1.4; 1.7) 0.862

2 0.0 (−0.4; 0.4) 0.898 −7.0 (−23.0; 12.4) 0.452 −0.6 (−2.3; 1.1) 0.463
 rAUC0–120 (% change) 1 0.2 (−0.2; 0.7) 0.252 −3.1 (−21.5; 19.5) 0.766 0.2 (−1.5; 2.0) 0.784

2 0.0 (−0.4; 0.4) 0.912 −7.8 (−25.0; 13.3) 0.440 −0.8 (−2.7; 1.1) 0.391
Men (n = 703)
 Fasting plasma  

GLP-1 (% change)
1 −0.6 (−1.0; −0.3) <0.001 −20.5 (−34.0; −4.4) 0.015 −2.0 (−3.3; −0.7) 0.004

2 −0.5 (−0.9; −0.1) 0.008 −19.5 (−33.0; −3.3) 0.021 −1.9 (−3.3; −0.5) 0.010
 rAUC0–30 (% change) 1 0.2 (−0.1; 0.4) 0.217 16.4 (1.2; 33.8) 0.033 0.0 (−1.0; 1.1) 0.945

2 0.1 (−0.2; 0.4) 0.640 15.8 (0.8; 33.0) 0.038 −0.3 (−1.4; 0.8) 0.581
 rAUC0–120 (% change) 1 0.3 (0.0; 0.6) 0.090 21.0 (3.4; 41.6) 0.018 0.5 (−0.7; 1.7) 0.441

2 0.1 (−0.2; 0.4) 0.454 20.0 (2.6; 40.3) 0.022 0.0 (−1.2; 1.3) 0.987

Estimated percentage change (95% CI) in fasting and glucose-stimulated response GLP-1 in plasma by a unit increase in PAEE (kJ/kg/day), MVPA (h/day), 
and CRF (mL O2/kg/min). Data are percentage change with 95% CI. P: P value for test of significance of the association. Model 1: Adjusted for age.  
Model 2: Further adjusted for BMI and peripheral insulin sensitivity (ISI0-120). MVPA is further adjusted for PAEE so an increase in MVPA is at the expense 
of a decrease in a less intensive physical activity (MET ≤3.0).
aAnalyses of cardiorespiratory fitness levels are based on the subset of participants with CRF data available (n = 793).
CRF, cardiorespiratory fitness; GLP-1, glucagon-like peptide-1; MVPA, moderate-to-vigorous physical activity; PAEE, physical activity energy expenditure; 
rAUC0–30, peak glucose-stimulated response 30 min after glucose ingestion; rAUC0–120, full glucose-stimulated response 120 min after glucose ingestion.
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cardiorespiratory fitness levels (35, 48, 49). Moreover, 
in another study on the present cohort, higher levels of 
PAEE were positively associated with insulin sensitivity 
and negatively with circulating insulin 2 h after glucose 
load (34). Therefore, beta-cells of individuals with higher 
physical activity levels seem to be ‘sensitized’ to secrete 
the minimum amount of insulin required for accurate 
glycaemic control (35, 48, 49) and therefore fasting levels 
are lower with higher activity levels.

Interestingly, in the present study, we observe that, 
independent of insulin sensitivity, greater moderate-
intensity physical activity is associated with lower fasting 
and greater glucose-stimulated GLP-1 response in men. 
Our findings suggest that a ‘sensitizing effect’ of physical 
activity exists for the GLP-1 secreting cells, which keeps 
fasting GLP-1 levels at a minimum whilst having an 
enhanced ability to acutely respond to nutrient intake 
with greater postprandial GLP-1 secretion. The effect of 
increased GLP-1 responses might be to sensitize the beta-
cell to glucose and thus the beta-cell produces the same 
amount of insulin but at lower plasma glucose levels. The 
exact underlying mechanisms for physical activity to affect 
GLP-1 secretion from intestinal L-cells remain unknown, 
but differences in gastrointestinal motility (10, 12)  
and gastric emptying (50, 51) could be involved.

No associations were found in the women, who 
were less physically active than men

We did not observe similar associations in women, which 
may be because the women in this study may not be 
sufficiently physically active in their everyday life. Only 
39% of the women included in the analyses met the 
Danish recommendations for moderate-intensity physical 
activity (i.e. ≥30 min/day). The average differences of daily 
physical activity between men and women corresponded 
to approximately 10 min/day (70 min/week). The 
women also had lower cardiorespiratory fitness levels. 
Sex specificity in terms of GLP-1 secretion has previously 
been established (6, 52) and a genetic component 
for cardiorespiratory fitness may partly explain some 
difference in fitness levels between sexes (53). Moreover, 
increased adiposity in women may also have an impact 
on fitness levels when presented relative to body weight, 
that is, for a similar body weight, women may have lower 
metabolically active lean tissue. In relation to this, the 
inhibiting effects of free fatty acids on GLP-1 secretion 
(29, 30) could potentially explain why GLP-1 responses 
are lower in women whose levels of free fatty acids in 
blood might be increased compared to men.

Comparison with other studies of GLP-1 and 
physical activity

A few longitudinal studies have investigated the medium- 
and long-term effects (≥3 months) of regular exercise 
interventions on GLP-1 secretion in overweight individuals 
(18, 25, 26). In a recent randomized controlled trial, Quist 
and colleagues reported higher fasting and postprandial 
GLP-1 concentrations after 6 months of vigorous exercise 
5 days/week (25), and in a comparable study from 2007, 
Martins   et al. found a tendency towards an increase in 
the delayed (90–180 min) postprandial GLP-1 response in 
overweight individuals after 12 weeks of regular exercise 
at vigorous intensity (18). These increased postprandial 
responses are in line with our findings, although we 
found that moderate intensity is enough for physical 
activity to be associated with greater GLP-1 response to 
glucose. However, Quist  et al. found that neither active 
commuting nor exercise at moderate intensity affected 
GLP-1 secretion (25). Also, the findings of increased 
fasting levels of GLP-1 after 6 months of regular vigorous 
exercise are in contrast to our findings, where we show 
fasting levels to be lower with more time spent being 
physically active. Explanations for contradictory fasting 
levels between studies may be the difference in age of 
the participants (i.e. 66 years in this present study and 34 
years in the study of Quist) or that the prescribed medium-
term vigorous exercise intervention was insufficient to 
‘sensitize’ intestinal secretion.

Strengths, limitations, and unanswered questions 
of the present study

Besides the large number of included participants 
(n = 1326), the study has several strengths using robust 
methods for quantification and analysis of physical 
activity parameters and GLP-1 levels: in regards to 
physical activity parameters, a strength is that physical 
activity behaviour is objectively assessed by 7 days of 
combined heart rate monitoring and accelerometry that 
have shown to give reliable estimates of physical activity 
(54) superior to subjective methods, or heart rate monitors 
or accelerometers alone (55). Also, the estimation of 
cardiorespiratory fitness levels based on step tests with 
individual heart rate monitoring is a strength (39). An 
additional strength is the adjustment of total activity 
volume – expressed as physical activity energy expenditure 
– in the regression analyses of moderate-intensity physical 
activity and GLP-1 to ensure that an increase in moderate-
intensity physical activity is at the expense of a reduction 
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in a less intensive physical activity (≤3 METs) and not due 
to an increase in total activity volume.

As briefly mentioned, the quantification method of 
GLP-1 is essential for the comparability between clinical 
studies investigating GLP-1 secretion (28). In the present 
study, we measured total GLP-1, whereas several studies 
report concentrations of only active or intact GLP-1 
(primarily GLP-1(7-36)NH2) that is secreted into the 
capillaries draining the small intestine. However, active 
GLP-1 is rapidly degraded by dipeptidyl peptidase-4  
(DPP-4) to form the GLP-1 metabolite (9-36NH2) and 
therefore only approximately 8% of the GLP-1 that was 
secreted may reach target organs like the pancreas (56). 
However, newly secreted GLP-1 appears to interact with 
sensory nerves in the lamina propria (on its way from the 
L-cell to the capillaries, where it starts to be degraded). It is 
therefore important to measure the total amount of GLP-1 
secreted, and not only the small fraction that survives in 
the intact form in peripheral plasma. Therefore, measuring 
the total GLP-1 (i.e. both 7-36NH2 and 9-36NH2) better 
reflects not only the secretion from the L-cell but also the 
sum of its neuronal and endocrine actions (28).

A limitation of the present study, besides the cross-
sectional design, is that the men and women were not 
matched with regards to the amount of time spent on 
moderate-intensity physical activity (weekly difference of 
70 min per week between sexes). Future studies including 
men and women equally matched in terms of time spent 
on moderate-intensity physical activity may be needed 
for further clarification of a sex-specific difference in the 
association between GLP-1 response and physical activity. 
Also, conducting a longitudinal study of the effects 
of habitual physical activity on GLP-1 secretion may 
elucidate potential causality in the association.

Clinical implications of the study

Findings of the present study indicate that habitual 
physical activity at moderate intensity have positive 
associations with glucose-stimulated GLP-1 secretion, 
independent of insulin sensitivity, in elderly men at 
risk of type 2 diabetes. Greater postprandial GLP-1 
responses may not only be beneficial for glucose control 
(through stimulation of insulin secretion) but also for 
appetite inhibition and satiety sensation (8, 57) which 
is beneficial in terms of prevention and treatment of 
overweight. Examples of activities requiring moderate 
intensity effort include brisk walking, gardening, 
walking domestic animals, and active involvement in 
games with grandchildren (58) all of which could be 

incorporated in the everyday lives of most people. A 
cohort study in 334,000 Europeans from 2015 showed 
that all-cause mortality rates could be reduced by 7% if 
all inactive individuals increased their activity levels to 
the equivalent of at least 20-min brisk walking per day 
(59). For comparison, avoiding obesity (BMI > 30) only 
reduces the number of deaths by 3% (59). Thus, focus 
on public health advises that even moderate-intensity 
activities are associated with improved metabolic and 
overall health is warranted.

Conclusion

In 703 men, we observed that more time spent being 
physically active was associated with lower fasting and 
greater glucose-induced GLP-1 responses, independent 
of insulin sensitivity. This indicates a beneficial effect 
of increasing time spent on even moderate-intensity 
habitual physical activity on GLP-1 secretion, which could 
contribute to improved glucose regulation and reduce the 
risk of type 2 diabetes. This was not observed in women, 
who were less physically active. Future mechanistic 
studies are needed to explore the potential molecular 
mechanism(s) underlying how habitual physical activity 
may affect fasting and glucose-induced GLP-1 secretion 
in humans.

Supplementary data
This is linked to the online version of the paper at https://doi.org/10.1530/
EC-19-0408.
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