51 research outputs found

    Spin-singlet dimerization in La 2RuO 5 investigated using magnetic susceptibility and specific heat measurements

    Get PDF
    The origin of spin-dimerization and concomitant spin-gap opening in the triclinic phase of poly- and single-crystalline La 2RuO 5 at unusually high temperatures was investigated using magnetic susceptibility and specific-heat measurements. From the low-temperature crystal structure the formation of antiferromagnetically coupled Ru4 + (S=1) dimers within the quasi-two-dimensional magnetic system can be deduced, resulting in a nonmagnetic singlet state. It was found that the antiferromagnetic coupling within the dimers is much stronger than the interaction with neighboring dimers. La 2RuO 5 exhibits a step-like change in the magnetic susceptibility at 161 K, indicating a first-order transition of combined magnetic and structural character. The size of the spin-gap has been estimated from the thermally activated behavior in the low-temperature dimerized phase and was found to be significantly different in the polycrystalline sample when compared to the results obtained from the single crystals. The magnetic entropy obtained from specific-heat measurements amounts to roughly 0.5Rln(3), reflecting solely the contribution of spin degrees of freedom to the entropy change during the phase transition. © 2012 American Physical Society

    On the magnetism of Ln{2/3}Cu{3}Ti{4}O{12} (Ln = lanthanide)

    Get PDF
    The magnetic and thermodynamic properties of the complete Ln2/3_{2/3}Cu3_3Ti4_4O12_{12} series were investigated. Here LnLn stands for the lanthanides La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb. %Most of the compounds were prepared as single phase polycrystalline powder %without any traces of impurities. Marginal amounts of %impurities (<2(< 2%) were detected Ln=Ln= Gd, Er, and Tm. %Significant amounts of impurity phases were found for Ln=Ln= Ce and Yb. All the samples investigated crystallize in the space group Im3ˉIm\bar{3} with lattice constants that follow the lanthanide contraction. The lattice constant of the Ce compound reveals the presence of Ce4+^{4+} leading to the composition Ce1/2_{1/2}Cu3_3Ti4_4O12_{12}. From magnetic susceptibility and electron-spin resonance experiments it can be concluded that the copper ions always carry a spin S=1/2S=1/2 and order antiferromagnetically close to 25\,K. The Curie-Weiss temperatures can approximately be calculated assuming a two-sublattice model corresponding to the copper and lanthanide ions, respectively. It seems that the magnetic moments of the heavy rare earths are weakly coupled to the copper spins, while for the light lanthanides no such coupling was found. The 4f4f moments remain paramagnetic down to the lowest temperatures, with the exception of the Tm compound, which indicates enhanced Van-Vleck magnetism due to a non-magnetic singlet ground state of the crystal-field split 4f4f manifold. From specific-heat measurements we accurately determined the antiferromagnetic ordering temperature and obtained information on the crystal-field states of the rare-earth ions. The heat-capacity results also revealed the presence of a small fraction of Ce3+^{3+} in a magnetic 4f14f^1 state.Comment: 10 pages, 10 figure

    Microservice Transition and its Granularity Problem: A Systematic Mapping Study

    Get PDF
    Microservices have gained wide recognition and acceptance in software industries as an emerging architectural style for autonomic, scalable, and more reliable computing. The transition to microservices has been highly motivated by the need for better alignment of technical design decisions with improving value potentials of architectures. Despite microservices' popularity, research still lacks disciplined understanding of transition and consensus on the principles and activities underlying "micro-ing" architectures. In this paper, we report on a systematic mapping study that consolidates various views, approaches and activities that commonly assist in the transition to microservices. The study aims to provide a better understanding of the transition; it also contributes a working definition of the transition and technical activities underlying it. We term the transition and technical activities leading to microservice architectures as microservitization. We then shed light on a fundamental problem of microservitization: microservice granularity and reasoning about its adaptation as first-class entities. This study reviews state-of-the-art and -practice related to reasoning about microservice granularity; it reviews modelling approaches, aspects considered, guidelines and processes used to reason about microservice granularity. This study identifies opportunities for future research and development related to reasoning about microservice granularity.Comment: 36 pages including references, 6 figures, and 3 table

    Colossal dielectric constants in transition-metal oxides

    Get PDF
    Many transition-metal oxides show very large ("colossal") magnitudes of the dielectric constant and thus have immense potential for applications in modern microelectronics and for the development of new capacitance-based energy-storage devices. In the present work, we thoroughly discuss the mechanisms that can lead to colossal values of the dielectric constant, especially emphasising effects generated by external and internal interfaces, including electronic phase separation. In addition, we provide a detailed overview and discussion of the dielectric properties of CaCu3Ti4O12 and related systems, which is today's most investigated material with colossal dielectric constant. Also a variety of further transition-metal oxides with large dielectric constants are treated in detail, among them the system La2-xSrxNiO4 where electronic phase separation may play a role in the generation of a colossal dielectric constant.Comment: 31 pages, 18 figures, submitted to Eur. Phys. J. for publication in the Special Topics volume "Cooperative Phenomena in Solids: Metal-Insulator Transitions and Ordering of Microscopic Degrees of Freedom

    Dielectric signature of charge order in lanthanum nickelates

    Get PDF
    Three charge-ordering lanthanum nickelates La2-xAxNiO4, substituted with specific amounts of A = Sr, Ca, and Ba to achieve commensurate charge order, are investigated using broadband dielectric spectroscopy up to GHz frequencies. The transition temperatures of the samples are characterized by additional specific heat and magnetic susceptibility measurements. We find colossal magnitudes of the dielectric constant for all three compounds and strong relaxation features, which partly are of Maxwell-Wagner type arising from electrode polarization. Quite unexpectedly, the temperature-dependent colossal dielectric constants of these materials exhibit distinct anomalies at the charge-order transitions.Comment: 7 pages, 6 figure
    • 

    corecore