8,303 research outputs found

    Biostratigraphy of the upper Bajocian-middle Callovian (Middle Jurassic), South America

    Get PDF
    The biostratigraphic division of the upper Bajocian-middle Callovian of South America is based on ammonites from different sections of the following provinces and regions: Neuquén, Mendoza, and San Juan in Argentina; Malleco, Linares, Talca, Atacama, Antofagasta, and Tarapacá in Chile. The complete upper Bajocian-middle Callovian succession includes the following biostratigraphic units: the Megasphaeroceras magnum assemblage zone, lowermost upper Bajocian; the Cadomites-Tulitidae mixed assemblage, (?lower) middle and upper Bathonian; the Steinmanni zone, index Lilloettia steinmanni (Spath), uppermost Bathonian, with two local horizons — Stehnocephalites gerthi horizon (Argentina) and Choffatia jupiter horizon (northern Chile); the Vergarensis zone, index Eur y cep halites vergarensis (Burck.), near the Bathonian-Callovian boundary; the Bodenbenderi zone, index Neuquenicerás (Frickites) bodenbenderi (Tornq.), lower Callovian; the Proximum zone, index Hecticoceras proximum Elmi, uppermost lower Callovian; and the Rehmannia (Loczyceras) patagoniensis horizon, middle Callovian.La división bioestratigráfica del Bajociano superior-Caloviano inferior de América del Sur esté basada en la fauna de amonites proveniente de diferentes secciones de las provincias/regiones de Neuquén, Mendoza, San Juan (Argentina), Malleco, Linares, Talca, Atacama, Antofagasta, y Tarapacá (Chile). La sucesión del Bajociano superior-Caloviano medio incluye las siguientes unidades bioestratigráfícas: zona de asociación de Megasphaeroceras magnum, Bajociano superior bajo; asociación de mezcla de Cadomites- Tulitidae, Bathoniano (?inferior) medio y superior; zona de Steinmanni, fósil guía Lilloettia steinmanni (Spath), Bathoniano superior alto, con dos horizontes locales — horizonte con Stehnocephalites gerthi (Argentina) y horizonte con Choffatia jupiter (norte de Chile); zona de Vergarensis, fósil guía Eurycephalites vergarensis (Burck.), aproximadamente límite Bathoniano-Caloviano; zona de Bodenbenderi, fósil guía Neuquenicerás (Frickites) bodenbenderi (Tornq.), Caloviano inferior; zona de Proximum, fósil guía Hecticoceras proximum Elmi, Caloviano inferior alto; horizonte con Rehmannia (Loczyceras) patagoniensis, Caloviano medio.Facultad de Ciencias Naturales y Muse

    Biostratigraphy of the upper Bajocian-middle Callovian (Middle Jurassic), South America

    Get PDF
    The biostratigraphic division of the upper Bajocian-middle Callovian of South America is based on ammonites from different sections of the following provinces and regions: Neuquén, Mendoza, and San Juan in Argentina; Malleco, Linares, Talca, Atacama, Antofagasta, and Tarapacá in Chile. The complete upper Bajocian-middle Callovian succession includes the following biostratigraphic units: the Megasphaeroceras magnum assemblage zone, lowermost upper Bajocian; the Cadomites-Tulitidae mixed assemblage, (?lower) middle and upper Bathonian; the Steinmanni zone, index Lilloettia steinmanni (Spath), uppermost Bathonian, with two local horizons — Stehnocephalites gerthi horizon (Argentina) and Choffatia jupiter horizon (northern Chile); the Vergarensis zone, index Eur y cep halites vergarensis (Burck.), near the Bathonian-Callovian boundary; the Bodenbenderi zone, index Neuquenicerás (Frickites) bodenbenderi (Tornq.), lower Callovian; the Proximum zone, index Hecticoceras proximum Elmi, uppermost lower Callovian; and the Rehmannia (Loczyceras) patagoniensis horizon, middle Callovian.La división bioestratigráfica del Bajociano superior-Caloviano inferior de América del Sur esté basada en la fauna de amonites proveniente de diferentes secciones de las provincias/regiones de Neuquén, Mendoza, San Juan (Argentina), Malleco, Linares, Talca, Atacama, Antofagasta, y Tarapacá (Chile). La sucesión del Bajociano superior-Caloviano medio incluye las siguientes unidades bioestratigráfícas: zona de asociación de Megasphaeroceras magnum, Bajociano superior bajo; asociación de mezcla de Cadomites- Tulitidae, Bathoniano (?inferior) medio y superior; zona de Steinmanni, fósil guía Lilloettia steinmanni (Spath), Bathoniano superior alto, con dos horizontes locales — horizonte con Stehnocephalites gerthi (Argentina) y horizonte con Choffatia jupiter (norte de Chile); zona de Vergarensis, fósil guía Eurycephalites vergarensis (Burck.), aproximadamente límite Bathoniano-Caloviano; zona de Bodenbenderi, fósil guía Neuquenicerás (Frickites) bodenbenderi (Tornq.), Caloviano inferior; zona de Proximum, fósil guía Hecticoceras proximum Elmi, Caloviano inferior alto; horizonte con Rehmannia (Loczyceras) patagoniensis, Caloviano medio.Facultad de Ciencias Naturales y Muse

    Biostratigraphy of the upper Bajocian-middle Callovian (Middle Jurassic), South America

    Get PDF
    The biostratigraphic division of the upper Bajocian-middle Callovian of South America is based on ammonites from different sections of the following provinces and regions: Neuquén, Mendoza, and San Juan in Argentina; Malleco, Linares, Talca, Atacama, Antofagasta, and Tarapacá in Chile. The complete upper Bajocian-middle Callovian succession includes the following biostratigraphic units: the Megasphaeroceras magnum assemblage zone, lowermost upper Bajocian; the Cadomites-Tulitidae mixed assemblage, (?lower) middle and upper Bathonian; the Steinmanni zone, index Lilloettia steinmanni (Spath), uppermost Bathonian, with two local horizons — Stehnocephalites gerthi horizon (Argentina) and Choffatia jupiter horizon (northern Chile); the Vergarensis zone, index Eur y cep halites vergarensis (Burck.), near the Bathonian-Callovian boundary; the Bodenbenderi zone, index Neuquenicerás (Frickites) bodenbenderi (Tornq.), lower Callovian; the Proximum zone, index Hecticoceras proximum Elmi, uppermost lower Callovian; and the Rehmannia (Loczyceras) patagoniensis horizon, middle Callovian.La división bioestratigráfica del Bajociano superior-Caloviano inferior de América del Sur esté basada en la fauna de amonites proveniente de diferentes secciones de las provincias/regiones de Neuquén, Mendoza, San Juan (Argentina), Malleco, Linares, Talca, Atacama, Antofagasta, y Tarapacá (Chile). La sucesión del Bajociano superior-Caloviano medio incluye las siguientes unidades bioestratigráfícas: zona de asociación de Megasphaeroceras magnum, Bajociano superior bajo; asociación de mezcla de Cadomites- Tulitidae, Bathoniano (?inferior) medio y superior; zona de Steinmanni, fósil guía Lilloettia steinmanni (Spath), Bathoniano superior alto, con dos horizontes locales — horizonte con Stehnocephalites gerthi (Argentina) y horizonte con Choffatia jupiter (norte de Chile); zona de Vergarensis, fósil guía Eurycephalites vergarensis (Burck.), aproximadamente límite Bathoniano-Caloviano; zona de Bodenbenderi, fósil guía Neuquenicerás (Frickites) bodenbenderi (Tornq.), Caloviano inferior; zona de Proximum, fósil guía Hecticoceras proximum Elmi, Caloviano inferior alto; horizonte con Rehmannia (Loczyceras) patagoniensis, Caloviano medio.Facultad de Ciencias Naturales y Muse

    Neapolitan volcanic area Tide Gauge Network (Southern Italy): Ground Displacements and Sea-Level Oscillations

    Get PDF
    Abstract. In this study, we investigate the oscillations of relative sea level through the analysis of tide gauge records about 10-year long collected in the Gulfs of Pozzuoli and Napoli (Southern Italy). The main goal of this study is to provide a suitable resolution model of the sea tides including low frequency (seiches), tidal bands and non-linear tides. The spectral analyses of the tide gauge records lead us to identify a number of seiche periods some of them already known from the literature and some other unknown. Furthermore, we target a non-conventional purpose of the tidal analysis, namely extracting from the tide gauge records the volcano-tectonic signal (vertical ground displacement) in the resurgent Campi Flegrei caldera. We suggest a method to filter out the volcano-tectonic signal (bradyseism) from the tide gauge records by deconvolving it from two records, one collected in the active volcanic area (Pozzuoli) and the other one collected in a tectonically stable station (Napoli), located beyond the caldera rim. Finally, we retrieve the relative mean sea level change in the Gulf of Naples and compare it with the trend found in five tide gauges spread along the Italian coast

    Therapeutic sequences in patients with grade 1−2 neuroendocrine tumors (NET): an observational multicenter study from the ELIOS group

    Get PDF
    Purpose: Many different treatments are suggested by guidelines to treat grade 1−2 (G1−G2) neuroendocrine tumors (NET). However, a precise therapeutic algorithm has not yet been established. This study aims at identifying and comparing the main therapeutic sequences in G1−G2 NET. Methods: A retrospective observational Italian multicenter study was designed to collect data on therapeutic sequences in NET. Median progression-free survival (PFS) was compared between therapeutic sequences, as well as the number and grade of side effects and the rate of dose reduction/treatment discontinuation. Results: Among 1182 patients with neuroendocrine neoplasia included in the ELIOS database, 131 G1–G2 gastroenteropancreatic, lung and unknown primary NET, unresectable or persistent/relapsing after surgery, treated with ≥2 systemic treatments, were included. Four main therapeutic sequences were identified in 99 patients: (A) somatostatin analogs (SSA) standard dose to SSA high dose (n = 36), (B) SSA to everolimus (n = 31), (C) SSA to chemotherapy (n = 17), (D) SSA to peptide receptor radionuclide therapy (PRRT) (n = 15). Median PFS of the second-line treatment was not reached in sequence A, 33 months in sequence B, 20 months in sequence C, 30 months in sequence D (p = 0.16). Both total number and severity of side effects were significantly higher in sequences B and C than A and D (p = 0.04), as well as the rate of dose reduction/discontinuation (p = 0.03). Conclusions: SSA followed by SSA high dose, everolimus, chemotherapy or PRRT represent the main therapeutic sequences in G1−G2 NET. Median PFS was not significantly different between sequences. However, the sequences with SSA high dose or PRRT seem to be better tolerated than sequences with everolimus or chemotherapy

    Nanoparticle-guided brain drug delivery: Expanding the therapeutic approach to neurodegenerative diseases

    Get PDF
    Neurodegenerative diseases (NDs) represent a heterogeneous group of aging-related disorders featured by progressive impairment of motor and/or cognitive functions, often accompanied by psychiatric disorders. NDs are denoted as ‘protein misfolding’ diseases or proteinopathies, and are classified according to their known genetic mechanisms and/or the main protein involved in disease onset and progression. Alzheimer’s disease (AD), Parkinson’s disease (PD) and Huntington’s disease (HD) are included under this nosographic umbrella, sharing histopathologically salient features, including deposition of insoluble proteins, activation of glial cells, loss of neuronal cells and synaptic connectivity. To date, there are no effective cures or disease-modifying therapies for these NDs. Several compounds have not shown efficacy in clinical trials, since they generally fail to cross the blood-brain barrier (BBB), a tightly packed layer of endothelial cells that greatly limits the brain internalization of endogenous substances. By engineering materials of a size usually within 1–100 nm, nanotechnology offers an alternative approach for promising and innovative therapeutic solutions in NDs. Nanoparticles can cross the BBB and release active molecules at target sites in the brain, minimizing side effects. This review focuses on the state-of-the-art of nanoengineered delivery systems for brain targeting in the treatment of AD, PD and HD. © 2021 by the authors. Licensee MDPI, Basel, Switzerland
    corecore