5,017 research outputs found
Phase transitions, entanglement and quantum noise interferometry in cold atoms
We show that entanglement monotones can characterize the pronounced
enhancement of entanglement at a quantum phase transition if they are sensitive
to long-range high order correlations. These monotones are found to develop a
sharp peak at the critical point and to exhibit universal scaling. We
demonstrate that similar features are shared by noise correlations and verify
that these experimentally accessible quantities indeed encode entanglement
information and probe separability.Comment: 4 pages 4 figure
The Axion and the Goldstone Higgs
We consider the renormalizable -model, in which the
Higgs particle has a pseudo-Nambu-Goldstone boson character, and explore what
the minimal field extension required to implement the Peccei-Quinn symmetry
(PQ) is, within the partial compositeness scenario. It turns out that the
minimal model does not require the enlargement of the exotic fermionic sector,
but only the addition of a singlet scalar: it is sufficient that the exotic
fermions involved in partial compositeness and the singlet scalar become
charged under Peccei-Quinn transformations. We explore the phenomenological
predictions for photonic signals in axion searches for all models discussed.
Because of the constraints imposed on the exotic fermion sector by the Standard
Model fermion masses, the expected range of allowed axion-photon couplings
turns out to be generically narrowed with respect to that of standard invisible
axion models, impacting the experimental quest.Comment: 31 pages, 2 Figures. Description improved, results unchange
Hanbury Brown-Twiss Interferometry for Fractional and Integer Mott Phases
Hanbury-Brown-Twiss interferometry (HBTI) is used to study integer and
fractionally filled Mott Insulator (MI) phases in period-2 optical
superlattices. In contrast to the quasimomentum distribution, this second order
interferometry pattern exhibits high contrast fringes in the it insulating
phases. Our detailed study of HBTI suggests that this interference pattern
signals the various superfluid-insulator transitions and therefore can be used
as a practical method to determine the phase diagram of the system. We find
that in the presence of a confining potential the insulating phases become
robust as they exist for a finite range of atom numbers. Furthermore, we show
that in the trapped case the HBTI interferogram signals the formation of the MI
domains and probes the shell structure of the system.Comment: 13 pages, 15 figure
Towards an -theorem for granular gases
The -theorem, originally derived at the level of Boltzmann non-linear
kinetic equation for a dilute gas undergoing elastic collisions, strongly
constrains the velocity distribution of the gas to evolve irreversibly towards
equilibrium. As such, the theorem could not be generalized to account for
dissipative systems: the conservative nature of collisions is an essential
ingredient in the standard derivation. For a dissipative gas of grains, we
construct here a simple functional related to the original ,
that can be qualified as a Lyapunov functional. It is positive, and results
backed by three independent simulation approaches (a deterministic spectral
method, the stochastic Direct Simulation Monte Carlo technique, and Molecular
Dynamics) indicate that it is also non-increasing. Both driven and unforced
cases are investigated
Cultivating diversity and food quality. Proceedings of Diversifood EU Forum, Brussels, 11 April 2018
To tackle this issue, Diversifood team organised a forum with policy makers and stakeholders on the 11th of April 2018, in Brussels.
Diversifood’s aim is to share results and key lessons including new approaches for the management of cultivated biodiversity, for plant breeding for sustainable farming systems, and new relationships among actors of food systems.
In the afternoon, there was time for discussion, knowledge sharing, collecting feedback and extending current policies to include cultivating diversity and food quality (for FP9, CAP 2020, The outputs of this workshop will feed Diversifood’s final recommendations.
The forum was kindly hosted by the European Committee of the Regions (Rue Belliard/Belliardstraat 101, 1040 Brussels)
Noncommutative Sp(2,R) Gauge Theories - A Field Theory Approach to Two-Time Physics
Phase-space and its relativistic extension is a natural space for realizing
Sp(2,R) symmetry through canonical transformations. On a Dx2 dimensional
covariant phase-space, we formulate noncommutative field theories, where
Sp(2,R) plays a role as either a global or a gauge symmetry group. In both
cases these field theories have potential applications, including certain
aspects of string theories, M-theory, as well as quantum field theories. If
interpreted as living in lower dimensions, these theories realize Poincare'
symmetry linearly in a way consistent with causality and unitarity. In case
Sp(2,R) is a gauge symmetry, we show that the spacetime signature is determined
dynamically as (D-2,2). The resulting noncommutative Sp(2,R) gauge theory is
proposed as a field theoretical formulation of two-time physics: classical
field dynamics contains all known results of `two-time physics', including the
reduction of physical spacetime from D to (D-2) dimensions, with the associated
`holography' and `duality' properties. In particular, we show that the solution
space of classical noncommutative field equations put all massless scalar,
gauge, gravitational, and higher-spin fields in (D-2) dimensions on
equal-footing, reminiscent of string excitations at zero and infinite tension
limits.Comment: 32 pages, LaTe
Inorganic carbon time series at Ocean Weather Station M in the Norwegian Sea
International audienceDissolved inorganic carbon (CT) has been collected at Ocean Weather Station M (OWSM) in the Norwegian Sea since 2001. Seasonal variations in CT are confined to the upper 50 m, where the biology is active, and below this layer no clear seasonal signal is seen. From winter to summer the surface CT concentration typical drops from 2140 to about 2040 ?mol kg?1, while a deep water CT concentration of about 2163 ?mol kg?1 is measured throughout the year. Observations show an annual increase in salinity normalized carbon concentration (nCT) of 1.3±0.7 ?mol kg?1 in the surface layer, which is equivalent to a pCO2 increase of 2.6±1.2 ?atm yr?1, i.e. larger than the atmospheric increase in this area. Observations also show an annual increase in the deep water nCT of 0.57± 0.24 ?mol kg?1, of which about a tenth is due to inflow of old Arctic water with larger amounts of remineralised matter. The remaining part has an anthropogenic origin and sources for this might be Greenland Sea surface water, Iceland Sea surface water, and/or recirculated Atlantic Water. By using an extended multi linear regression method (eMLR) it is verified that anthropogenic carbon has entered the whole water column at OWSM
A research methodology for characterising dairy product consumption systems
This document on characterisation methodology specifically refers to the dairy consumption systems. The methodology developed and presented herein aims at guiding the activities of scientists who wish to investigate the dairy consumption systems at or around a specific site. Some characterisation of dairy product consumption has been conducted at most ILCA zonal sites. Pursued by different scientists at different times and places, a variety of methodological approaches have been employed in conducting these studies. This document is based upon ILCA's experiences at its zonal sites and incorporates the methodological lessons learned in the course of the studies. The steps that have been followed in constructing the conceptual framework instruments and in specifying the analytical methods are outlined. Data collected and analysed following this format will allow drawing conclusions about a particular location and its consumption system. It will also facilitate planning future research and development activities
Time-resolved Observation and Control of Superexchange Interactions with Ultracold Atoms in Optical Lattices
Quantum mechanical superexchange interactions form the basis of quantum
magnetism in strongly correlated electronic media. We report on the direct
measurement of superexchange interactions with ultracold atoms in optical
lattices. After preparing a spin-mixture of ultracold atoms in an
antiferromagnetically ordered state, we measure a coherent
superexchange-mediated spin dynamics with coupling energies from 5 Hz up to 1
kHz. By dynamically modifying the potential bias between neighboring lattice
sites, the magnitude and sign of the superexchange interaction can be
controlled, thus allowing the system to be switched between antiferromagnetic
or ferromagnetic spin interactions. We compare our findings to predictions of a
two-site Bose-Hubbard model and find very good agreement, but are also able to
identify corrections which can be explained by the inclusion of direct
nearest-neighbor interactions.Comment: 24 pages, 7 figure
Exact Results and Holography of Wilson Loops in N=2 Superconformal (Quiver) Gauge Theories
Using localization, matrix model and saddle-point techniques, we determine
exact behavior of circular Wilson loop in N=2 superconformal (quiver) gauge
theories. Focusing at planar and large `t Hooft couling limits, we compare its
asymptotic behavior with well-known exponential growth of Wilson loop in N=4
super Yang-Mills theory. For theory with gauge group SU(N) coupled to 2N
fundamental hypermultiplets, we find that Wilson loop exhibits non-exponential
growth -- at most, it can grow a power of `t Hooft coupling. For theory with
gauge group SU(N) x SU(N) and bifundamental hypermultiplets, there are two
Wilson loops associated with two gauge groups. We find Wilson loop in untwisted
sector grows exponentially large as in N=4 super Yang-Mills theory. We then
find Wilson loop in twisted sector exhibits non-analytic behavior with respect
to difference of two `t Hooft coupling constants. By letting one gauge coupling
constant hierarchically larger/smaller than the other, we show that Wilson
loops in the second type theory interpolate to Wilson loop in the first type
theory. We infer implications of these findings from holographic dual
description in terms of minimal surface of dual string worldsheet. We suggest
intuitive interpretation that in both type theories holographic dual background
must involve string scale geometry even at planar and large `t Hooft coupling
limit and that new results found in the gauge theory side are attributable to
worldsheet instantons and infinite resummation therein. Our interpretation also
indicate that holographic dual of these gauge theories is provided by certain
non-critical string theories.Comment: 52 pages, 7 figures v2. more figures embedded v3. minor stylistic
changes, v4. published versio
- …