375 research outputs found

    Complex Physics in Cluster Cores: Showstopper for the Use of Clusters for Cosmology?

    Get PDF
    The influence of cool galaxy cluster cores on the X-ray luminosity--gravitational mass relation is studied with Chandra observations of 64 clusters in the HIFLUGCS sample. As preliminary results we find (i) a significant offset of cool core (CC) clusters to the high luminosity (or low mass) side compared to non-cool core (NCC) clusters, (ii) a smaller scatter of CC clusters compared to NCC clusters, (iii) a decreasing fraction of CC clusters with increasing cluster mass, (iv) a reduced scatter in the luminosity--mass relation for the entire sample if the luminosity is scaled properly with the central entropy. The implications of these results on the intrinsic scatter are discussed.Comment: 6 pages; to appear in the proceedings of the conference Heating vs. Cooling in Galaxies and Clusters of Galaxies, edited by H. Boehringer, P. Schuecker, G.W. Pratt, and A. Finoguenov. Dedicated to the memory of Peter Schuecke

    Investigating the cores of fossil systems with Chandra

    Full text link
    We investigate the cores of fossil galaxy groups and clusters (`fossil systems') using archival Chandra data for a sample of 17 fossil systems. We determined the cool-core fraction for fossils via three observable diagnostics, the central cooling time, cuspiness, and concentration parameter. We quantified the dynamical state of the fossils by the X-ray peak/brightest cluster galaxy (BCG), and the X-ray peak/emission weighted centre separations. We studied the X-ray emission coincident with the BCG to detect the presence of potential thermal coronae. A deprojection analysis was performed for z < 0.05 fossils to obtain cooling time and entropy profiles, and to resolve subtle temperature structures. We investigated the Lx-T relation for fossils from the 400d catalogue to see if the scaling relation deviates from that of other groups. Most fossils are identified as cool-core objects via at least two cool-core diagnostics. All fossils have their dominant elliptical galaxy within 50 kpc of the X-ray peak, and most also have the emission weighted centre within that distance. We do not see clear indications of a X-ray corona associated with the BCG unlike that has been observed for some other objects. Fossils do not have universal temperature profiles, with some low-temperature objects lacking features that are expected for ostensibly relaxed objects with a cool-core. The entropy profiles of the z < 0.05 fossil systems can be well-described by a power law model, albeit with indices smaller than 1. The 400d fossils Lx-T relation shows indications of an elevated normalisation with respect to other groups, which seems to persist even after factoring in selection effects.Comment: Accepted for publication in Astronomy and Astrophysic

    Scaling relations for galaxy clusters: properties and evolution

    Full text link
    Well-calibrated scaling relations between the observable properties and the total masses of clusters of galaxies are important for understanding the physical processes that give rise to these relations. They are also a critical ingredient for studies that aim to constrain cosmological parameters using galaxy clusters. For this reason much effort has been spent during the last decade to better understand and interpret relations of the properties of the intra-cluster medium. Improved X-ray data have expanded the mass range down to galaxy groups, whereas SZ surveys have openened a new observational window on the intracluster medium. In addition,continued progress in the performance of cosmological simulations has allowed a better understanding of the physical processes and selection effects affecting the observed scaling relations. Here we review the recent literature on various scaling relations, focussing on the latest observational measurements and the progress in our understanding of the deviations from self similarity.Comment: 38 pages. Review paper. Accepted for publication in Space Science Reviews (eds: S. Ettori, M. Meneghetti). This is a product of the work done by an international team at the International Space Science Institute (ISSI) in Bern on "Astrophysics and Cosmology with Galaxy Clusters: the X-ray and Lensing View

    Studying the Nature of Dark Energy with Galaxy Clusters

    Full text link
    We report on the status of our effort to constrain the nature of dark energy through the evolution of the cluster mass function. Chandra temperature profiles for 31 clusters from a local cluster sample are shown. The X-ray appearance of the proto supermassive binary black hole at the center of the cluster Abell 400 is described. Preliminary weak lensing results obtained with Megacam@MMT for a redshift z=0.5 cluster from a distant cluster sample are given.Comment: 5 pages, to appear in: Aschenbach, B., Burwitz, V., Hasinger, G., Leibundgut, B. (eds.), Relativistic Astrophysics and Cosmology - Einstein's Legacy. ESO Astrophysics Symposia, Springer Verlag, Berlin, German

    X-ray Substructure Studies of Four Galaxy Clusters using XMM-Newton Data

    Full text link
    Mahdavi et al. find that the degree of agreement between weak lensing and X-ray mass measurements is a function of cluster radius. Numerical simulations also point out that X-ray mass proxies do not work equally well at all radii. The origin of the effect is thought to be associated with cluster mergers. Recent work presenting the cluster maps showed an ability of X-ray maps to reveal and study cluster mergers in detail. Here we present a first attempt to use the study of substructure in assessing the systematics of the hydrostatic mass measurements using two-dimensional (2-D) X-ray diagnostics. The temperature map is uniquely able to identify the substructure in an almost relaxed cluster which would be unnoticed in the ICM electron number density and pressure maps. We describe the radial fluctuations in the 2-D maps by a cumulative/differential scatter profile relative to the mean profile within/at a given radius. The amplitude indicates ~10 fluctuations in the temperature, electron number density and entropy maps, and ~15 fluctuations in the pressure map. The amplitude of and the discontinuity in the scatter complement 2-D substructure diagnostics, e.g. indicating the most disturbed radial range. There is a tantalizing link between the substructure identified using the scatter of the entropy and pressure fluctuations and the hydrostatic mass bias relative to the expected mass based on the M-Yx and M-Mgas relations particularly at r500. XMM-Newton observations with ~120,000 source photons from the cluster are sufficient to apply our substructure diagnostics via the spectrally measured 2-D temperature, electron number density, entropy and pressure maps.Comment: 44 pages, 16 figures, 3 tables, including some language editing from ApJ, published in Ap

    The Cool-Core Bias in X-ray Galaxy Cluster Samples I: Method And Application To HIFLUGCS

    Full text link
    When selecting flux-limited cluster samples, the detection efficiency of X-ray instruments is not the same for centrally-peaked and flat objects, which introduces a bias in flux-limited cluster samples. We quantify this effect in the case of a well-known cluster sample, HIFLUGCS. We simulate a population of X-ray clusters with various surface-brightness profiles, and use the instrumental characteristics of the ROSAT All-Sky Survey (RASS) to select flux-limited samples similar to the HIFLUGCS sample and predict the expected bias. For comparison, we also estimate observationally the bias in the HIFLUGCS sample using XMM-Newton and ROSAT data. We find that the selection of X-ray cluster samples is significantly biased (∼29\sim29%) in favor of the peaked, Cool-Core (CC) objects, with respect to Non-Cool-Core (NCC) systems. Interestingly, we find that the bias affects the low-mass, nearby objects (groups, poor clusters) much more than the more luminous objects (i.e massive clusters). We also note a moderate increase of the bias for the more distant systems. Observationally, we propose to select the objects according to their flux in a well-defined physical range excluding the cores, 0.2r500−r5000.2r_{500}-r_{500}, to get rid of the bias. From the fluxes in this range, we reject 13 clusters out of the 64 in the HIFLUGCS sample, none of which appears to be NCC. As a result, we estimate that less than half (35-37%) of the galaxy clusters in the local Universe are strong CC. In the paradigm where the CC objects trace relaxed clusters as opposed to unrelaxed, merging objects, this implies that to the present day the majority of the objects are not in a relaxed state. From this result, we estimate a rate of heating events of ∼1/3\sim1/3 Gyr−1^{-1} per dark-matter halo.Comment: 16 pages, 9 figures, accepted for publication in A&

    Virial mass in DGP brane cosmology

    Full text link
    We study the virial mass discrepancy in the context of a DPG brane-world scenario and show that such a framework can offer viable explanations to account for the mass discrepancy problem. This is done by defining a geometrical mass N\mathcal{N} that we prove to be proportional to the virial mass. Estimating N\mathcal{N} using observational data, we show that it behaves linearly with rr and has a value of the order of M200M_{200}, pointing to a possible resolution of the virial mass discrepancy. We also obtain the radial velocity dispersion of galaxy clusters and show that it is compatible with the radial velocity dispersion profile of such clusters. This velocity dispersion profile can be used to differentiate various models predicting the virial mass.Comment: 12 pages, 1 figure, to appear in CQ
    • …
    corecore