45,773 research outputs found
Damage localization and quantification of composite stratified beam structures using residual force method
10.1088/1742-6596/842/1/012028Journal of Physics: Conference Series84211202
Modelling the overdiagnosis of breast cancer due to mammography screening in women aged 40 to 49 in the United Kingdom
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, andreproduction in any
medium, provided the original work is properly cited
Deep Eyes: Binocular Depth-from-Focus on Focal Stack Pairs
Human visual system relies on both binocular stereo cues and monocular
focusness cues to gain effective 3D perception. In computer vision, the two
problems are traditionally solved in separate tracks. In this paper, we present
a unified learning-based technique that simultaneously uses both types of cues
for depth inference. Specifically, we use a pair of focal stacks as input to
emulate human perception. We first construct a comprehensive focal stack
training dataset synthesized by depth-guided light field rendering. We then
construct three individual networks: a Focus-Net to extract depth from a single
focal stack, a EDoF-Net to obtain the extended depth of field (EDoF) image from
the focal stack, and a Stereo-Net to conduct stereo matching. We show how to
integrate them into a unified BDfF-Net to obtain high-quality depth maps.
Comprehensive experiments show that our approach outperforms the
state-of-the-art in both accuracy and speed and effectively emulates human
vision systems
The hidden horizon and black hole unitarity
We motivate through a detailed analysis of the Hawking radiation in a
Schwarzschild background a scheme in accordance with quantum unitarity. In this
scheme the semi-classical approximation of the unitary quantum - horizonless -
black hole S-matrix leads to the conventional description of the Hawking
radiation from a classical black hole endowed with an event horizon. Unitarity
is borne out by the detailed exclusive S-matrix amplitudes. There, the fixing
of generic out-states, in addition to the in-state, yields in asymptotic
Minkowski space-time saddle-point contributions which are dominated by
Planckian metric fluctuations when approaching the Schwarzschild radius. We
argue that these prevent the corresponding macroscopic "exclusive backgrounds"
to develop an event horizon. However, if no out-state is selected, a distinct
saddle-point geometry can be defined, in which Planckian fluctuations are
tamed. Such "inclusive background" presents an event horizon and constitutes a
coarse-grained average over the aforementioned exclusive ones. The classical
event horizon appears as a coarse-grained structure, sustaining the
thermodynamic significance of the Bekenstein-Hawking entropy. This is
reminiscent of the tentative fuzzball description of extremal black holes: the
role of microstates is played here by a complete set of out-states. Although
the computations of unitary amplitudes would require a detailed theory of
quantum gravity, the proposed scheme itself, which appeals to the metric
description of gravity only in the vicinity of stationary points, does not.Comment: 29 pages, 4 figures. Typos corrected. Two footnotes added (footnotes
3 and 5
Brick Walls and AdS/CFT
We discuss the relationship between the bulk-boundary correspondence in
Rehren's algebraic holography (and in other 'fixed-background' approaches to
holography) and in mainstream 'Maldacena AdS/CFT'. Especially, we contrast the
understanding of black-hole entropy from the viewpoint of QFT in curved
spacetime -- in the framework of 't Hooft's 'brick wall' model -- with the
understanding based on Maldacena AdS/CFT. We show that the brick-wall
modification of a Klein Gordon field in the Hartle-Hawking-Israel state on
1+2-Schwarzschild AdS (BTZ) has a well-defined boundary limit with the same
temperature and entropy as the brick-wall-modified bulk theory. One of our main
purposes is to point out a close connection, for general AdS/CFT situations,
between the puzzle raised by Arnsdorf and Smolin regarding the relationship
between Rehren's algebraic holography and mainstream AdS/CFT and the puzzle
embodied in the 'correspondence principle' proposed by Mukohyama and Israel in
their work on the brick-wall approach to black hole entropy. Working on the
assumption that similar results will hold for bulk QFT other than the Klein
Gordon field and for Schwarzschild AdS in other dimensions, and recalling the
first author's proposed resolution to the Mukohyama-Israel puzzle based on his
'matter-gravity entanglement hypothesis', we argue that, in Maldacena AdS/CFT,
the algebra of the boundary CFT is isomorphic only to a proper subalgebra of
the bulk algebra, albeit (at non-zero temperature) the (GNS) Hilbert spaces of
bulk and boundary theories are still the 'same' -- the total bulk state being
pure, while the boundary state is mixed (thermal). We also argue from the
finiteness of its boundary (and hence, on our assumptions, also bulk) entropy
at finite temperature, that the Rehren dual of the Maldacena boundary CFT
cannot itself be a QFT and must, instead, presumably be something like a string
theory.Comment: 54 pages, 3 figures. Arguments strengthened in the light of B.S. Kay
`Instability of Enclosed Horizons' arXiv:1310.739
Brane-world black holes and the scale of gravity
A particle in four dimensions should behave like a classical black hole if
the horizon radius is larger than the Compton wavelength or, equivalently, if
its degeneracy (measured by entropy in units of the Planck scale) is large. For
spherically symmetric black holes in 4 + d dimensions, both arguments again
lead to a mass threshold MC and degeneracy scale Mdeg of the order of the
fundamental scale of gravity MG. In the brane-world, deviations from the
Schwarzschild metric induced by bulk effects alter the horizon radius and
effective four-dimensional Euclidean action in such a way that MC \simeq Mdeg
might be either larger or smaller than MG. This opens up the possibility that
black holes exist with a mass smaller than MG and might be produced at the LHC
even if M>10 TeV, whereas effects due to bulk graviton exchanges remain
undetectable because suppressed by inverse powers of MG. Conversely, even if
black holes are not found at the LHC, it is still possible that MC>MG and MG
\simeq 1TeV.Comment: 4 pages, no figur
The holographic principle
There is strong evidence that the area of any surface limits the information
content of adjacent spacetime regions, at 10^(69) bits per square meter. We
review the developments that have led to the recognition of this entropy bound,
placing special emphasis on the quantum properties of black holes. The
construction of light-sheets, which associate relevant spacetime regions to any
given surface, is discussed in detail. We explain how the bound is tested and
demonstrate its validity in a wide range of examples.
A universal relation between geometry and information is thus uncovered. It
has yet to be explained. The holographic principle asserts that its origin must
lie in the number of fundamental degrees of freedom involved in a unified
description of spacetime and matter. It must be manifest in an underlying
quantum theory of gravity. We survey some successes and challenges in
implementing the holographic principle.Comment: 52 pages, 10 figures, invited review for Rev. Mod. Phys; v2:
reference adde
Quantum corrections and black hole spectroscopy
In the work \cite{BRM,RBE}, black hole spectroscopy has been successfully
reproduced in the tunneling picture. As a result, the derived entropy spectrum
of black hole in different gravity (including Einstein's gravity,
Einstein-Gauss-Bonnet gravity and Ho\v{r}ava-Lifshitz gravity) are all evenly
spaced, sharing the same forms as , where physical process is only
confined in the semiclassical framework. However, the real physical picture
should go beyond the semiclassical approximation. In this case, the physical
quantities would undergo higher-order quantum corrections, whose effect on
different gravity shares in different forms. Motivated by these facts, in this
paper we aim to observe how quantum corrections affect black hole spectroscopy
in different gravity. The result shows that, in the presence of higher-order
quantum corrections, black hole spectroscopy in different gravity still shares
the same form as , further confirming the entropy quantum is universal
in the sense that it is not only independent of black hole parameters, but also
independent of higher-order quantum corrections. This is a desiring result for
the forthcoming quantum gravity theory.Comment: 14 pages, no figure, use JHEP3.cls. to be published in JHE
The Friedmann-Lemaitre-Robertson-Walker Big Bang singularities are well behaved
We show that the Big Bang singularity of the
Friedmann-Lemaitre-Robertson-Walker model does not raise major problems to
General Relativity. We prove a theorem showing that the Einstein equation can
be written in a non-singular form, which allows the extension of the spacetime
before the Big Bang. The physical interpretation of the fields used is
discussed. These results follow from our research on singular semi-Riemannian
geometry and singular General Relativity.Comment: 10 pages, 5 figure
Theoretical survey of tidal-charged black holes at the LHC
We analyse a family of brane-world black holes which solve the effective
four-dimensional Einstein equations for a wide range of parameters related to
the unknown bulk/brane physics. We first constrain the parameters using known
experimental bounds and, for the allowed cases, perform a numerical analysis of
their time evolution, which includes accretion through the Earth. The study is
aimed at predicting the typical behavior one can expect if such black holes
were produced at the LHC. Most notably, we find that, under no circumstances,
would the black holes reach the (hazardous) regime of Bondi accretion.
Nonetheless, the possibility remains that black holes live long enough to
escape from the accelerator (and even from the Earth's gravitational field) and
result in missing energy from the detectors.Comment: RevTeX4, 12 pages, 4 figures, 5 tables, minor changes to match the
accepted version in JHE
- …
