139 research outputs found

    Toroidal Universal Drift Instability: A Global Gyrokinetic Study

    Get PDF
    An electron density gradient driven instability identified as the toroidal branch of the universal drift instability is studied using a global gyrokinetic model treating both electrons and ions fully nonadiabatically and valid at all orders in the ratio of the Larmor radius to the wavelength. The physics of the magnetic drift resonance, Landau resonance and transit resonance, which are considered to be important for the toroidal universal mode, are kept for both species. A systematic parametric study is carried out for the mode. The toroidal universal drift mode is observed to sustain finite temperature gradient and can thus coexist with the temperature gradient driven modes and may contribute to the observed particle transport along with other drift modes. Especially at intermediate scales between the ion temperature gradient driven mode and electron temperature gradient driven mode, this branch of the drift instability can also be a plausible candidate for the observed particle loss. The effect of magnetic fluctuations on the mode is also investigated. In contrast to the slab mode, the toroidal branch of the universal drift mode is found to be strongly stabilized by electromagnetic effects at finite plasma beta. Finally, the effect of trapped electrons on the universal mode is studied and compared with the other possible modes in the same parameter regime, namely, ion temperature gradient mode in the presence of trapped electrons and pure trapped electron modes

    A comprehensive gyrokinetic description of global electrostatic microinstabilities in a tokamak

    Get PDF
    It is believed that low frequency microinstabilities such as ion temperature gradient (ITG) driven modes and trapped electron modes (TEMs) are largely responsible for the experimentally observed anomalous transport via the ion and electron channels in a tokamak. In the present work, a comprehensive global linear gyrokinetic model incorporating fully kinetic (trapped and passing) electrons and ions, actual ion to electron mass ratio, radial coupling, and profile variation is used to investigate the ITG driven modes and pure TEMs. These modes are found to exhibit multiscale structures in the presence of nonadiabatic passing electrons. The multiscale structure is related to the large nonadiabaticity of electrons in the vicinity of mode rational magnetic surfaces and leads to reduced mixing length estimates of transport compared to those obtained from adiabatic electron models

    Short wavelength ion temperature gradient mode and coupling with trapped electrons

    Get PDF
    The effect of trapped electrons on the ion temperature gradient ITG mode in a regime where its wavelength is shorter than the conventional ITG mode k Li 1 has been studied. Such a mode propagates in the ion diamagnetic direction with a typical scale length k Li 1 and is termed as the short wavelength ITG SWITG mode. The effect of the trapped electrons on this SWITG mode is investigated, for the first time, using a global and local linear gyrokinetic model. The trapped electrons are observed to destabilize the mode strongly. Comparison of the various parameter scans for the SWITG mode with and without the trapped electrons is presented. One important result obtained is that, while in the absence of the trapped electrons the mode was found to subside with increasing value of n=Ln /R exhibiting the character of a slablike mode, the presence of the trapped electrons has been observed to enhance the n=Ln /R window of the existence of the SWITG mode making the mode more toroidal like. © 2009 American Institute of Physics

    Role of nonadiabatic untrapped electrons in global electrostatic ion temperature gradient driven modes in a tokamak

    Get PDF
    In this work, role of nonadiabatic untrapped electrons in the context of a global ion temperature gradient driven mode has been investigated. In past studies, untrapped electrons have been assumed to be able to respond "instantaneously" to a disturbance. It is proposed that such adiabatic electron models should be reexamined for two important reasons: (i) It is known that global modes with n in the range of 3 <= n <= 15 (n is the toroidal mode number) have eigenmode widths spanning several mode-rational surfaces. It is being argued that close to these mode-rational surfaces, adiabatic electron models fail and a consistent treatment of nonadiabatic electrons is crucial for global modes. (ii) Electromagnetic effects depend on passing nonadiabatic electron dynamics. A minimal nontrivial model for the benchmarking of global linear and nonlinear gyrokinetic codes in the future becomes necessary, which can treat both passing ions and electrons on the same physics footing. As a first step, a study of the effect of nonadiabatic passing electrons in global electrostatic ion temperature gradients is presented. Interesting results include a demonstration of multiscale structure, downshift in critical eta(i) with increasing eta(e), and a reduction in mixing-length based transport. (C) 2008 American Institute of Physics

    Local and global Fokker-Planck neoclassical calculations showing flow and bootstrap current modification in a pedestal

    Full text link
    In transport barriers, particularly H-mode edge pedestals, radial scale lengths can become comparable to the ion orbit width, causing neoclassical physics to become radially nonlocal. In this work, the resulting changes to neoclassical flow and current are examined both analytically and numerically. Steep density gradients are considered, with scale lengths comparable to the poloidal ion gyroradius, together with strong radial electric fields sufficient to electrostatically confine the ions. Attention is restricted to relatively weak ion temperature gradients (but permitting arbitrary electron temperature gradients), since in this limit a delta-f (small departures from a Maxwellian distribution) rather than full-f approach is justified. This assumption is in fact consistent with measured inter-ELM H-Mode edge pedestal density and ion temperature profiles in many present experiments, and is expected to be increasingly valid in future lower collisionality experiments. In the numerical analysis, the distribution function and Rosenbluth potentials are solved for simultaneously, allowing use of the exact field term in the linearized Fokker-Planck collision operator. In the pedestal, the parallel and poloidal flows are found to deviate strongly from the best available conventional neoclassical prediction, with large poloidal variation of a different form than in the local theory. These predicted effects may be observable experimentally. In the local limit, the Sauter bootstrap current formulae appear accurate at low collisionality, but they can overestimate the bootstrap current near the plateau regime. In the pedestal ordering, ion contributions to the bootstrap and Pfirsch-Schluter currents are also modified

    Full radius linear and nonlinear gyrokinetic simulations for tokamaks and stellarators: zonal flows, applied E x B flows, trapped electrons and finite beta

    Get PDF
    The aim of this paper is to report on recent advances made in global gyrokinetic simulations of ion temperature gradient (ITG) modes and other microinstabilities. The nonlinear development and saturation of ITG modes and the role of E x B zonal flows are studied with a global nonlinear deltaf formulation that retains parallel nonlinearity and thus allows for a check of the energy conservation property as a means of verifying the quality of the numerical simulation. Due to an optimized loading technique, the conservation property is satisfied with an unprecedented quality well into the nonlinear stage. The zonal component of the perturbation evolves to a quasi-steady state with regions of ITG suppression, strongly reduced radial energy flux and steepened effective temperature profiles alternating with regions of higher ITG mode amplitudes, larger radial energy flux and flattened effective temperature profiles. A semi-Lagrangian approach free of statistical noise is proposed as an alternative to the nonlinear deltaf formulation. An ASDEX-Upgrade experiment with an internal transport barrier is analysed with a global gyrokinetic code that includes trapped electron dynamics. The weakly destabilizing effect of trapped electron dynamics on ITG modes in an axisymmetric bumpy configuration modelling W7-X is shown in global linear simulations that retain the full electron dynamics. Finite beta effects on microinstabilities are investigated with a linear global spectral electromagnetic gyrokinetic formulation. The radial global structure of electromagnetic modes shows a resonant behaviour with rational q values

    Ion radial transport induced by ICRF waves in tokamaks

    Get PDF
    The wave-induced fluxes of energetic-trapped ions during ICRF heating of tokamak plasmas are calculated using quasilinear equations. A simple single particle model of this transport mechanism is also given. Both a convective flux proportional to k/sub phi/vertical bar E/sub +/vertical bar/sup 2/ and a diffusive flux proportional to k/sub phi//sup 2/vertical bar E/sub +/vertical bar/sup 2/ are found. Here, k/sub phi/ is the toroidal wave number and E/sub +/ is the left-hand polarized wave field. The convective flux may become significant for large k/sub phi/ if the wave spectrum is asymmetric in k/sub phi/. But for the conditions of most previous experiments, these calculations indicate that radial transport driven directly by the ICRF wave is unimportant

    On-Orbit Performance of the Far Ultraviolet Spectroscopic Explorer (FUSE) Satellite

    Get PDF
    Launch of the Far Ultraviolet Spectroscopic Explorer (FUSE) has been followed by an extensive period of calibration and characterization as part of the preparation for normal satellite operations. Major tasks carried out during this period include initial coalignment, focusing and characterization of the four instrument channels, and a preliminary measurement of the resolution and throughput performance of the instrument. We describe the results from this test program, and present preliminary estimates of the on-orbit performance of the FUSE satellite based on a combination of this data and prelaunch laboratory measurements.Comment: 8 pages, including 3 figures. This paper will appear in the FUSE special issue of ApJ Letter
    • …
    corecore