11,954 research outputs found

    Space Shuttle orbiter separation bolts

    Get PDF
    Evolution of the space shuttle from previous spacecraft systems dictated growth and innovative design of previously standard ordnance devices. Initially, one bolt design was programmed for both 747 and external tank application. However, during development and subsequent analyses, two distinct designs evolved. The unique requirements of both bolts include: high combined loading, redundant initiation, flush separation plane, self-righting and shank attenuation. Of particular interest are the test methods, problem areas, and use of subscale models which demonstrated feasibility at an early phase in the program. The techniques incorporated in the shuttle orbiter bolts are applicable to other mechanisms

    Slide release mechanism

    Get PDF
    A releasable support device is described which is comprised of a hollow body with a sleeve extending transversely there-through for receiving the end of a support shank. A slider-latch, optionally lubricated, extends through side recesses in the sleeve to straddle the shank, respectively, in latched and released positions. The slider-latch is slid from its latched to its unlatched position by a pressure squib whereupon a spring or other pressure means pushes the shank out of the sleeve. At the same time, a follower element is lodged in and closed the hole in the body wall from which the shank was discharged. The mechanism was designed for the shuttle orbiter/external tank connection device

    EEC -- The Challenge from Europe

    Get PDF

    Peace and the Strategy Conflict

    Get PDF

    Molecular electronics exploiting sharp structure in the electrode density-of-states. Negative differential resistance and Resonant Tunneling in a poled molecular layer on Al/LiF electrodes

    Full text link
    Density-functional calculations are used to clarify the role of an ultrathin LiF layer on Al electrodes used in molecular electronics. The LiF layer creates a sharp density of states (DOS), as in a scanning-tunneling microscope (STM) tip. The sharp DOS, coupled with the DOS of the molecule leads to negative differential resistance (NDR). Electron transfer between oriented molecules occurs via resonant tunneling. The I-V characteristic for a thin-film of tris (8-hydroxyquinoline)- aluminum (AlQ) molecules, oriented using electric-field poling, and sandwiched between two Al/LiF electrodes is in excellent agreement with theory. This molecular device presents a new paradigm for a convenient, robust, inexpensive alternative to STM or mechanical break-junction structures.Comment: 5 pages, 3 figure

    Bell-inequality violation with a triggered photon-pair source

    Full text link
    Here we demonstrate, for the first time, violation of Bell's inequality using a triggered quantum dot photon-pair source without post-selection. Furthermore, the fidelity to the expected Bell state can be increased above 90% using temporal gating to reject photons emitted at times when collection of uncorrelated light is more probable. A direct measurement of a CHSH Bell inequality is made showing a clear violation, highlighting that a quantum dot entangled photon source is suitable for communication exploiting non-local quantum correlations.Comment: 14 pages, 4 figure
    corecore