13,595 research outputs found

    A correlation method to predict the surface pressure distribution on an infinite plate from which a jet is issuing

    Get PDF
    A correlation method to predict pressures induced on an infinite plate by a jet issuing from the plate into a subsonic free stream was developed. The complete method consists of an analytical method which models the blockage and entrainment properties of the jet and a correlation which accounts for the effects of separation. The method was developed for jet velocity ratios up to ten and for radial distances up to five diameters from the jet. Correlation curves and data comparisons are presented for jets issuing normally from a flat plate with velocity ratios one to twelve. Also, a list of references which deal with jets in a crossflow is presented

    Prediction of vortex shedding from circular and noncircular bodies in supersonic flow

    Get PDF
    An engineering prediction method and associated computer code NOZVTX to predict nose vortex shedding from circular and noncircular bodies in supersonic flow at angles of attack and roll are presented. The body is represented by either a supersonic panel method for noncircular cross sections or line sources and doublets for circular cross sections, and the lee side vortex wake is modeled by discrete vortices in crossflow planes. The three-dimensional steady flow problem is reduced to a two-dimensional, unsteady, separated flow problem for solution. Comparison of measured and predicted surface pressure distributions, flow field surveys, and aerodynamic characteristics is presented for bodies with circular and noncircular cross-sectional shapes

    Spin-1 effective Hamiltonian with three degenerate orbitals: An application to the case of V_2O_3

    Full text link
    Motivated by recent neutron and x-ray observations in V_2O_3, we derive the effective Hamiltonian in the strong coupling limit of an Hubbard model with three degenerate t_{2g} states containing two electrons coupled to spin S = 1, and use it to re-examine the low-temperature ground-state properties of this compound. An axial trigonal distortion of the cubic states is also taken into account. Since there are no assumptions about the symmetry properties of the hopping integrals involved, the resulting spin-orbital Hamiltonian can be generally applied to any crystallographic configuration of the transition metal ion giving rise to degenerate t_{2g} orbitals. Specializing to the case of V_2O_3 we consider the antiferromagnetic insulating phase. We find two variational regimes, depending on the relative size of the correlation energy of the vertical pairs and the in-plane interaction energy. The former favors the formation of stable molecules throughout the crystal, while the latter tends to break this correlated state. We determine in both cases the minimizing orbital solutions for various spin configurations, and draw the corresponding phase diagrams. We find that none of the symmetry-breaking stable phases with the real spin structure presents an orbital ordering compatible with the magnetic space group indicated by very recent observations of non-reciprocal x-ray gyrotropy in V_2O_3. We do however find a compatible solution with very small excitation energy in two distinct regions of the phase space, which might turn into the true ground state of V_2O_3 due to the favorable coupling with the lattice. We illustrate merits and drawbacks of the various solutions and discuss them in relation to the present experimental evidence.Comment: 36 pages, 19 figure

    Computer programs to predict induced effects of jets exhausting into a crossflow

    Get PDF
    A user's manual for two computer programs was developed to predict the induced effects of jets exhausting into a crossflow. Program JETPLT predicts pressures induced on an infinite flat plate by a jet exhausting at angles to the plate and Program JETBOD, in conjunction with a panel code, predicts pressures induced on a body of revolution by a jet exhausting normal to the surface. Both codes use a potential model of the jet and adjacent surface with empirical corrections for the viscous or nonpotential effects. This program manual contains a description of the use of both programs, instructions for preparation of input, descriptions of the output, limitations of the codes, and sample cases. In addition, procedures to extend both codes to include additional empirical correlations are described

    Quantum spin liquid at finite temperature: proximate dynamics and persistent typicality

    Get PDF
    Quantum spin liquids are long-range entangled states of matter with emergent gauge fields and fractionalized excitations. While candidate materials, such as the Kitaev honeycomb ruthenate α\alpha-RuCl3_3, show magnetic order at low temperatures TT, here we demonstrate numerically a dynamical crossover from magnon-like behavior at low TT and frequencies ω\omega to long-lived fractionalized fermionic quasiparticles at higher TT and ω\omega. This crossover is akin to the presence of spinon continua in quasi-1D spin chains. It is further shown to go hand in hand with persistent typicality down to very low TT. This aspect, which has also been observed in the spin-1/2 kagome Heisenberg antiferromagnet, is a signature of proximate spin liquidity and emergent gauge degrees of freedom more generally, and can be the basis for the numerical study of many finite-TT properties of putative spin liquids.Comment: 13 pages, 11 figures, accepted versio

    A study of prediction methods for the high angle-of-attack aerodynamics of straight wings and fighter aircraft

    Get PDF
    Work is described dealing with two areas which are dominated by the nonlinear effects of vortex flows. The first area concerns the stall/spin characteristics of a general aviation wing with a modified leading edge. The second area concerns the high-angle-of-attack characteristics of high performance military aircraft. For each area, the governing phenomena are described as identified with the aid of existing experimental data. Existing analytical methods are reviewed, and the most promising method for each area used to perform some preliminary calculations. Based on these results, the strengths and weaknesses of the methods are defined, and research programs recommended to improve the methods as a result of better understanding of the flow mechanisms involved

    Variational study of the antiferromagnetic insulating phase of V2O3 based on Nth order Muffin-Tin-Orbitals

    Full text link
    Motivated by recent results of NNth order muffin-tin orbital (NMTO) implementation of the density functional theory (DFT), we re-examine low-temperature ground-state properties of the anti-ferromagnetic insulating phase of vanadium sesquioxide V2_2O3_3. The hopping matrix elements obtained by the NMTO-downfolding procedure differ significantly from those previously obtained in electronic structure calculations and imply that the in-plane hopping integrals are as important as the out-of-plane ones. We use the NMTO hopping matrix elements as input and perform a variational study of the ground state. We show that the formation of stable molecules throughout the crystal is not favorable in this case and that the experimentally observed magnetic structure can still be obtained in the atomic variational regime. However the resulting ground state (two t2gt_{2g} electrons occupying the degenerate ege_g doublet) is in contrast with many well established experimental observations. We discuss the implications of this finding in the light of the non-local electronic correlations certainly present in this compound.Comment: 7 pages, 2 figure

    Developing and Researching PhET simulations for Teaching Quantum Mechanics

    Get PDF
    Quantum mechanics is difficult to learn because it is counterintuitive, hard to visualize, mathematically challenging, and abstract. The Physics Education Technology (PhET) Project, known for its interactive computer simulations for teaching and learning physics, now includes 18 simulations on quantum mechanics designed to improve learning of this difficult subject. Our simulations include several key features to help students build mental models and intuitions about quantum mechanics: visual representations of abstract concepts and microscopic processes that cannot be directly observed, interactive environments that directly couple students' actions to animations, connections to everyday life, and efficient calculations so students can focus on the concepts rather than the math. Like all PhET simulations, these are developed using the results of education research and feedback from educators, and are tested in student interviews and classroom studies. This article provides an overview of the PhET quantum simulations and their development. We also describe research demonstrating their effectiveness and share some insights about student thinking that we have gained from our research on quantum simulations.Comment: accepted by American Journal of Physics; v2 includes an additional study, more explanation of research behind claims, clearer wording, and more reference
    • …
    corecore