404 research outputs found
Upconversion of optical signals with multi-longitudinal-mode pump lasers
Multi-longitudinal-mode lasers have been believed to be good candidates as
pump sources for optical frequency conversion. However, we present a
semi-classical model for frequency conversion of optical signals with a
multimode pump laser, which shows that fluctuations of the instantaneous pump
power limit the conversion efficiency. In an experiment, we upconverted a 1550
nm optical signal in a periodically poled lithium niobate waveguide using with
a multi-longitudinal-mode laser, an observed a maximum conversion efficiency of
70%, in good agreement with our theoretical model. Compared to single-mode
pumping, multimode pumping is not a suitable technique for attaining stable
near-unity-efficiency frequency conversion. However, the results obtained here
could find application in characterization of the spectral or temporal
structure of multi-longitudinal-mode lasers.Comment: 6 pages, 4 figures, comments are welcome
Nonlinear interaction between two heralded single photons
Harnessing nonlinearities strong enough to allow two single photons to
interact with one another is not only a fascinating challenge but is central to
numerous advanced applications in quantum information science. Currently, all
known approaches are extremely challenging although a few have led to
experimental realisations with attenuated classical laser light. This has
included cross-phase modulation with weak classical light in atomic ensembles
and optical fibres, converting incident laser light into a non-classical stream
of photon or Rydberg blockades as well as all-optical switches with attenuated
classical light in various atomic systems. Here we report the observation of a
nonlinear parametric interaction between two true single photons. Single
photons are initially generated by heralding one photon from each of two
independent spontaneous parametric downconversion sources. The two heralded
single photons are subsequently combined in a nonlinear waveguide where they
are converted into a single photon with a higher energy. Our approach
highlights the potential for quantum nonlinear optics with integrated devices,
and as the photons are at telecom wavelengths, it is well adapted to
applications in quantum communication.Comment: 4 pages, 4 figure
D-brane orbiting NS5-branes
We study real time dynamics of a Dp-brane orbiting a stack of NS5-branes. It
is generally known that a BPS D-brane moving in the vicinity of NS5-branes
becomes unstable due to the presence of tachyonic degree of freedom induced on
the D-brane. Indeed, the D-brane necessarily falls into the fivebranes due to
gravitational attraction and eventually collapses into a pressureless fluid.
Such a decay of the D-brane is known to be closely related to the rolling
tachyon problem. In this paper we show that in special cases the decay of
D-brane caused by gravitational attraction can be avoided. Namely for certain
values of energy and angular momentum the D-brane orbits around the fivebranes,
maintaining certain distance from the fivebranes all the time, and the process
of tachyon condensation is suppressed. We show that the tachyonic degree of
freedom induced on such a D-brane really disappears and the brane returns to a
stable D-brane.Comment: 12 pages, latex, added referenc
Gathering in Dynamic Rings
The gathering problem requires a set of mobile agents, arbitrarily positioned
at different nodes of a network to group within finite time at the same
location, not fixed in advanced.
The extensive existing literature on this problem shares the same fundamental
assumption: the topological structure does not change during the rendezvous or
the gathering; this is true also for those investigations that consider faulty
nodes. In other words, they only consider static graphs. In this paper we start
the investigation of gathering in dynamic graphs, that is networks where the
topology changes continuously and at unpredictable locations.
We study the feasibility of gathering mobile agents, identical and without
explicit communication capabilities, in a dynamic ring of anonymous nodes; the
class of dynamics we consider is the classic 1-interval-connectivity.
We focus on the impact that factors such as chirality (i.e., a common sense
of orientation) and cross detection (i.e., the ability to detect, when
traversing an edge, whether some agent is traversing it in the other
direction), have on the solvability of the problem. We provide a complete
characterization of the classes of initial configurations from which the
gathering problem is solvable in presence and in absence of cross detection and
of chirality. The feasibility results of the characterization are all
constructive: we provide distributed algorithms that allow the agents to
gather. In particular, the protocols for gathering with cross detection are
time optimal. We also show that cross detection is a powerful computational
element.
We prove that, without chirality, knowledge of the ring size is strictly more
powerful than knowledge of the number of agents; on the other hand, with
chirality, knowledge of n can be substituted by knowledge of k, yielding the
same classes of feasible initial configurations
From Euclidean Geometry to Knots and Nets
This document is the Accepted Manuscript of an article accepted for publication in Synthese. Under embargo until 19 September 2018. The final publication is available at Springer via https://doi.org/10.1007/s11229-017-1558-x.This paper assumes the success of arguments against the view that informal mathematical proofs secure rational conviction in virtue of their relations with corresponding formal derivations. This assumption entails a need for an alternative account of the logic of informal mathematical proofs. Following examination of case studies by Manders, De Toffoli and Giardino, Leitgeb, Feferman and others, this paper proposes a framework for analysing those informal proofs that appeal to the perception or modification of diagrams or to the inspection or imaginative manipulation of mental models of mathematical phenomena. Proofs relying on diagrams can be rigorous if (a) it is easy to draw a diagram that shares or otherwise indicates the structure of the mathematical object, (b) the information thus displayed is not metrical and (c) it is possible to put the inferences into systematic mathematical relation with other mathematical inferential practices. Proofs that appeal to mental models can be rigorous if the mental models can be externalised as diagrammatic practice that satisfies these three conditions.Peer reviewe
Positive energy unitary irreducible representations of D=6 conformal supersymmetry
We give a constructive classification of the positive energy (lowest weight)
unitary irreducible representations of the D=6 superconformal algebras
osp(8*/2N). Our results confirm all but one of the conjectures of Minwalla (for
N=1,2) on this classification. Our main tool is the explicit construction of
the norms of the states that has to be checked for positivity. We give also the
reduction of the exceptional UIRs.Comment: 27 pages, TeX with harvmac, amssym.def, amssym.tex; v.2: minor
corrections and references added; v.3: minor corrections; v.4: to appear in
J. Phys.
Three dimensional three component whole heart cardiovascular magnetic resonance velocity mapping: comparison of flow measurements from 3D and 2D acquisitions
<p>Abstract</p> <p>Background</p> <p>Two-dimensional, unidirectionally encoded, cardiovascular magnetic resonance (CMR) velocity mapping is an established technique for the quantification of blood flow in large vessels. However, it requires an operator to correctly align the planes of acquisition. If all three directional components of velocity are measured for each voxel of a 3D volume through the phases of the cardiac cycle, blood flow through any chosen plane can potentially be calculated retrospectively. The initial acquisition is then more time consuming but relatively operator independent.</p> <p>Aims</p> <p>To compare the curves and volumes of flow derived from conventional 2D and comprehensive 3D flow acquisitions in a steady state flow model, and in vivo through planes transecting the ascending aorta and pulmonary trunk in 10 healthy volunteers.</p> <p>Methods</p> <p>Using a 1.5 T Phillips Intera CMR system, 3D acquisitions used an anisotropic 3D segmented k-space phase contrast gradient echo sequence with a short EPI readout, with prospective ECG and diaphragm navigator gating. The 2D acquisitions used segmented k-space phase contrast with prospective ECG and diaphragm navigator gating. Quantitative flow analyses were performed retrospectively with dedicated software for both the in vivo and in vitro acquisitions.</p> <p>Results</p> <p>Analysis of in vitro data found the 3D technique to have overestimated the continuous flow rate by approximately 5% across the entire applied flow range. In vivo, the 2D and the 3D techniques yielded similar volumetric flow curves and measurements. Aortic flow: (mean ± SD), 2D = 89.5 ± 13.5 ml & 3D = 92.7 ± 17.5 ml. Pulmonary flow: 2D = 98.8 ± 18.4 ml & 3D = 94.9 ± 19.0 ml). Each in vivo 3D acquisition took about 8 minutes or more.</p> <p>Conclusion</p> <p>Flow measurements derived from the 3D and 2D acquisitions were comparable. Although time consuming, comprehensive 3D velocity acquisition could be relatively operator independent, and could potentially yield information on flow through several retrospectively chosen planes, for example in patients with congenital or valvular heart disease.</p
- …